Soft singularity crossing and transformation of matter properties

A.Yu. Kamenshchik

University of Bologna and INFN, Bologna
L.D. Landau Institute for Theoretical Physics, Moscow

October 1-4, 2013
Based on
Z. Keresztes, L.A. Gergely, A.Y. Kamenshchik, V. Gorini and
D. Polarski,
Soft singularity crossing and transformation of matter
properties,

Previous papers:
V. Gorini, A.Y. Kamenshchik, U. Moschella and V. Pasquier,
Tachyons, scalar fields and cosmology,

Z. Keresztes, L.A. Gergely, V. Gorini, U. Moschella and
A.Y. Kamenshchik, Tachyon cosmology, supernovae data and
the Big Brake singularity,
Z. Keresztes, L.A. Gergely, A.Y. Kamenshchik, V. Gorini and D. Polarski,
Will the tachyonic Universe survive the Big Brake?,

Z. Keresztes, L.A. Gergely and A.Y. Kamenshchik,
The paradox of soft singularity crossing and its resolution by
distributional cosmological quantities,

Review:
A.Yu. Kamenshchik,
Quantum cosmology and late-time singularities,
Class. Quantum Grav. 30 (2013) 173001
Content

1. Introduction
2. Description of the tachyon cosmological model
3. The Big Brake cosmological singularity and more general soft singularities
4. Crossing of the soft singularity in the model with the anti-Chaplygin gas and dust
5. Crossing the Big Brake singularity and the future of the universe in the tachyon model in the presence of dust
6. Numerical simulations for the tachyon model
7. Conclusions
8. Postscript
The general relativity connects the geometrical properties of the spacetime to its matter content. The matter tells to the spacetime how to curve itself, the spacetime geometry tells to the matter how to move.

The cosmological singularities constitute one of the main problems of modern cosmology.

The discovery of the cosmic acceleration stimulated the development of “exotic” cosmological models of dark energy; some of these models possess the so called soft or sudden singularities characterized by the finite value of the radius of the universe and its Hubble parameter.
“Traditional” or “hard” singularities are associated with the zero volume of the universe (or of its scale factor), and with infinite values of the Hubble parameter, of the energy density and of the pressure – Big Bang and Big Crunch.

In some models interplay between the geometry and the matter forces the matter to change some of its basic properties, such as equation of state for fluids and even the form of the Lagrangian.

Tachyons (Born-Infeld fields) is a natural candidate for a dark energy.

The toy tachyon model, proposed in 2004 has two particular features:
- Tachyon field transforms itself into a pseudo-tachyon field.
- The evolution of the universe can encounter a new type of singularity - the Big Brake singularity.
The Big Brake singularity is a particular type of the so-called “soft” cosmological singularities - the radius of the universe is finite, the velocity of expansion is equal to zero, the deceleration is infinite.

The predictions of the model do not contradict observational data on supernovae of the type Ia (2009, 2010).

The Big Brake singularity is a particular one - it is possible to cross it (2010).
Open questions: other soft singularities - is it possible to cross them?

What is more important: matter or geometry?
Description of the tachyon model

The flat Friedmann universe

\[ds^2 = dt^2 - a^2(t)dl^2 \]

The tachyon Lagrange density

\[L = -V(T)\sqrt{1 - \dot{T}^2} \]

The energy density

\[\rho = \frac{V(T)}{\sqrt{1 - \dot{T}^2}} \]

The pressure

\[p = -V(T)\sqrt{1 - \dot{T}^2} \]
The Friedmann equation

\[H^2 \equiv \frac{\dot{a}^2}{a^2} = \rho \]

The equation of motion for the tachyon field

\[\frac{\ddot{T}}{1 - T^2} + 3H \dot{T} + \frac{V_T}{V} = 0 \]

In our model

\[V(T) = \frac{\Lambda}{\sin^2 \left[\frac{3}{2} \sqrt{\Lambda (1 + k)} T \right]} \times \sqrt{1 - (1 + k) \cos^2 \left[\frac{3}{2} \sqrt{\Lambda (1 + k)} T \right]}, \]

where \(k \) and \(\Lambda > 0 \) are the parameters of the model. The case \(k > 0 \) is more interesting.
Phase portrait of the model for a positive k.

Some trajectories (cosmological evolutions) finish in the infinite de Sitter expansion. In other trajectories the tachyon field transforms into the \textit{pseudotachyon} field with the Lagrange density, energy density and positive pressure.

\begin{align*}
L &= W(T) \sqrt{\dot{T}^2 - 1}, \\
\rho &= \frac{W(T)}{\sqrt{\dot{T}^2 - 1}}, \\
p &= W(T) \sqrt{\dot{T}^2 - 1}, \\
W(T) &= \frac{\Lambda}{\sin^2 \left[\frac{3}{2} \sqrt{\Lambda (1 + k) T} \right] } \\
&\times \sqrt{(1 + k) \cos^2 \left[\frac{3}{2} \sqrt{\Lambda (1 + k) T} - 1 \right]} \\
\end{align*}
What happens with the Universe after the transformation of the tachyon into the pseudotachyon?

It encounters the **Big Brake** cosmological singularity.
The Big Brake cosmological singularity and other soft singularities

\[t \to t_{BB} < \infty \]
\[a(t \to t_{BB}) \to a_{BB} < \infty \]
\[\dot{a}(t \to t_{BB}) \to 0 \]
\[\ddot{a}(t \to t_{BB}) \to -\infty \]
\[R(t \to t_{BB}) \to +\infty \]
\[T(t \to t_{BB}) \to T_{BB}, \ |T_{BB}| < \infty \]
\[|\dot{T}(t \to t_{BB})| \to \infty \]
\[\rho(t \to t_{BB}) \to 0 \]
\[p(t \to t_{BB}) \to +\infty \]

If \(\dot{a}(t_{BB}) \neq 0 \) it is more general soft singularity.
Crossing the Big Brake singularity and the future of the universe

At the Big Brake singularity the equations for geodesics are regular, because the Christoffel symbols are regular (moreover, they are equal to zero).

Is it possible to cross the Big Brake?

Let us study the regime of approaching the Big Brake.
Analyzing the equations of motion we find that approaching the Big Brake singularity the tachyon field behaves as

$$T = T_{BB} + \left(\frac{4}{3W(T_{BB})} \right)^{1/3} (t_{BB} - t)^{1/3}.$$

Its time derivative $s \equiv \dot{T}$ behaves as

$$s = -\left(\frac{4}{81W(T_{BB})} \right)^{1/3} (t_{BB} - t)^{-2/3}.$$

the cosmological radius is

$$a = a_{BB} - \frac{3}{4} a_{BB} \left(\frac{9W^2(T_{BB})}{2} \right)^{1/3} (t_{BB} - t)^{4/3},$$

its time derivative is

$$\dot{a} = a_{BB} \left(\frac{9W^2(T_{BB})}{2} \right)^{1/3} (t_{BB} - t)^{1/3}.$$
and the Hubble variable is

\[H = \left(\frac{9W^2(T_{BB})}{2} \right)^{1/3} (t_{BB} - t)^{1/3}. \]

All these expressions can be continued in the region where \(t > t_{BB} \), which amounts to crossing the Big Brake singularity. Only the expression for \(s \) is singular at \(t = t_{BB} \) but this singularity is integrable and not dangerous.
Once reaching the Big Brake, it is impossible for the system to stay there because of the infinite deceleration, which eventually leads to the decrease of the scale factor. This is because after the Big Brake crossing the time derivative of the cosmological radius and Hubble variable change their signs. The expansion is then followed by a contraction, culminating in the Big Crunch singularity.
Crossing of the soft singularity in the model with the anti-Chaplygin gas and dust

One of the simplest cosmological models revealing the Big Brake singularity is the model based on the anti-Chaplygin gas with an equation of state

\[p = \frac{A}{\rho}, \quad A > 0 \]

\[\rho(a) = \sqrt{\frac{B}{a^6} - A} \]

At \(a = a_* = \left(\frac{B}{A} \right)^{1/6} \) the universe encounters the Big Brake singularity.
The anti-Chaplygin gas plus dust

The energy density and the pressure are

\[
\rho(a) = \sqrt{\frac{B}{a^6} - A} + \frac{M}{a^3}, \quad p(a) = \frac{A}{\sqrt{\frac{B}{a^6} - A}}.
\]

Due to the dust component, the Hubble parameter has a non-zero value at the encounter with the singularity, therefore the dust implies further expansion. With continued expansion however, the energy density and the pressure of the anti-Chaplygin gas would become ill-defined.
In principle one can solve the paradox by redefining the anti-Chaplygin gas in a distributional sense (Keresztes, Gergely, Kamenshchik, 2012). Then a contraction could follow the expansion phase at the singularity at the price of a jump in the Hubble parameter. Although such an abrupt change is not common in any cosmological evolution, we explicitly show that the set of Friedmann, Raychaudhuri and continuity equations are all obeyed both at the singularity and in its vicinity. The jump in the Hubble parameter

\[H \rightarrow -H \]

leaves intact the first Friedmann equation \(H^2 = \rho \), the continuity equations and the equations of state, however, it breaks the validity of the second Friedmann (Raychaudhuri) equation \(\dot{H} = -\frac{3}{2}(\rho + p) \).
\[
H(t) = H_S \text{sgn}(t_S - t) \\
\quad + \sqrt{\frac{3A}{2H_S a_S^4}} \text{sgn}(t_S - t) \sqrt{|t_S - t|},
\]

\[
\dot{H} = -2H_S \delta(t_S - t) - \sqrt{\frac{3A}{8H_S a_S^4}} \frac{\text{sgn}(t_S - t)}{\sqrt{|t_S - t|}}.
\]

To restore the validity of the Raychaudhuri equation we add a singular \(\delta\)-term to the pressure of the anti-Chaplygin gas

\[
p = \sqrt{\frac{A}{6H_S |t_S - t|}} + \frac{4}{3} H_S \delta(t_S - t).
\]

To preserve the equation of state we also modify the expression for its energy density:

\[
\rho = \frac{A}{\sqrt{\frac{A}{6H_S |t_S - t|}} + \frac{4}{3} H_S \delta(t_S - t)}.
\]
The abrupt transition from the expansion to the contraction of the universe does not look natural. There is an alternative/complementary way of resolving the paradox. One can try to change the equation of state of the anti-Chaplygin gas at passing the soft singularity. There is some analogy between the transition from an expansion to a contraction of a universe and an absolutely elastic bounce of a ball from a wall in classical mechanics. There is also an abrupt change of the direction of the velocity (momentum). However, we know that really the velocity is changed continuously due to the deformation of the ball and of the wall.
The pressure of the anti-Chaplygin gas

\[p = \frac{A}{\sqrt{\frac{B}{a^6} - A}} \]

tends to \(+\infty \) when the universe approaches the soft singularity.

Requiring the expansion to continue into the region \(a > a_s \), while changing minimally the equation of state, we assume

\[p = \frac{A}{\sqrt{|\frac{B}{a^6} - A|}}, \]

\[p = \frac{A}{\sqrt{A - \frac{B}{a^6}}}, \text{ for } a > a_s. \]

It implies the energy density

\[\rho = -\sqrt{A - \frac{B}{a^6}}. \]
The anti-Chaplygin gas transforms itself into Chaplygin gas with negative energy density. The pressure remains positive, expansion continues. The spacetime geometry remains continuous. The expansion stops at $a = a_0$, where

$$\frac{M}{a_0^3} - \sqrt{A - \frac{B}{a_0^6}} = 0.$$
Then the contraction of the universe begins. At the moment when the energy density of the Chaplygin gas becomes equal to zero (again a soft singularity), the Chaplygin gas transforms itself into the anti-Chaplygin gas and the contraction continues to culminate in the encounter with the Big Crunch singularity $a = 0$.
Crossing the Big Brake singularity and the future of the universe in the tachyon model in the presence of dust.

What happens with the Born-Infeld type pseudo-tachyon field in the presence of a dust component? Does the universe still run into a soft singularity? Yes!

\[T = T_S \pm \sqrt{\frac{2}{3H_S}} \sqrt{t_S - t}, \quad H_S = \sqrt{\frac{\rho_{m,0}}{a_S^3}}. \]
A pseudo-tachyon field with a constant potential is equivalent to the anti-Chaplygin gas. To the change of the equation of state of the anti-Chaplygin gas corresponds the following transformation of the Lagrangian of the pseudo-tachyon field:

\[L = W_0 \sqrt{g^{tt} \dot{T}^2 + 1}, \]

\[p = W_0 \sqrt{\dot{T}^2 + 1} \]

\[\rho = -\frac{W_0}{\sqrt{\dot{T}^2 + 1}}. \]

It is a new type of Born-Infeld field, which we may call “quasi-tachyon”.
For an arbitrary potential the Lagrangian reads

\[L = W(T) \sqrt{g^{tt} \dot{T}^2 + 1}, \quad a > a_s \]

\[\frac{\ddot{T}}{\dot{T}^2 + 1} + 3H \dot{T} - \frac{W,T}{W} = 0, \]

\[\rho = -\frac{W(T)}{\sqrt{\dot{T}^2 + 1}}, \]

\[\rho = W(T) \sqrt{\dot{T}^2 + 1}. \]
In the vicinity of the soft singularity the friction term $3H \dot{T}$ in the equation of motion dominates over the potential term $W_{,T}/W$. Hence, the dependence of $W(T)$ on its argument is not essential and a pseudo-tachyon field approaching this singularity behaves like one with a constant potential. Thus, it is reasonable to assume that upon crossing the soft singularity the pseudo-tachyon transforms itself into a quasi-tachyon for any potential $W(T)$.
The dynamics of the model with trigonometric potential in the presence of dust.

After the soft singularity crossing the absolute value of the negative contribution to the energy density of the universe induced by the quasi-tachyon grows while the energy density of the dust decreases due to the expansion of the universe. Thus, at some moment the total energy density vanishes and the universe reaches the point of maximal expansion, after which the expansion is replaced by a contraction and the Hubble variable changes sign.

At some finite moment of time the universe hits again the soft singularity. Upon crossing this singularity the quasi-tachyon transforms back to pseudo-tachyon.

After this the universe continues its contraction until it hits the Big Crunch singularity.
Numerical simulations for the tachyon model.

Comparing the prediction of our model with the Supernovae Ia Union2 Dataset, we have found the subset of accessible initial conditions \((T, \dot{T}, \Omega_m)\).

Starting from this initial conditions we have simulated future evolutions of the universe.

Some of the trajectories go towards de Sitter attractive node.

Other trajectories go towards the transformation tachyon-pseudo-tachyon, the first crossing the soft singularity, the turning point, the second soft singularity crossing, and finally, the encounter with the Big Crunch.
The future evolution of those universes, which are in a 68.3% confidence level fit with the supernova data.
Conclusions.

- The general relativity contains a lot of surprises concerning relations between the matter and geometry. It is enough to take it seriously.
- The next direction of investigations - to include a spatial curvature.
- More difficult problem - to consider spatially inhomogeneous case.
It was shown that the tachyon potential $\frac{1}{T^2}$ can provide a power law expansion of a flat Friedmann universe.

It was shown that soft cosmological singularities can be crossed.