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The current accelerated expansion of the universe has been confirmed by several independent
observations. Standard candles and distance indicators point out an accelerated expansion
which cannot be obtained by ordinary perfect fluid matter as source for the cosmological
Friedmann equations (Perlmutter et al.(1999), Riess et al.(1998)).
In particular, the discrepancy between the amount of luminous matter revealed from
observations and the critical density needed to obtain a spatially flat universe could be solved if
one assumes the existence of a non-standard cosmic fluid with negative pressure, which is not
clustered in large scale structure. In the simplest scenario, this dark energy, can be addressed
as the Einstein Cosmological Constant and would contribute about 70% to the global energy
budget of the universe.



From an observational viewpoint, this model has the feature to be in agreement with data
coming from observations. It could be assumed as the first step towards a new standard
cosmological model and it is indicated as Concordance Lambda Cold Dark Matter (ΛCDM)
Model. Despite of the agreement with observations, the ΛCDM model presents incongruences
from a theoretical viewpoint. If the cosmological constant constitutes the “vacuum state” of
the gravitational field, we have to explain the 120 orders of magnitude between its observed
value at cosmological level and the one predicted by any quantum gravity (Weinberg(1989)).
A very straightforward approach is to look for explanations for dark matter and dark energy
within the realm of known physics. On the other hand, an alternative is that General Relativity
is not capable of describing the universe at scales larger than Solar System, and dark
components (energy + matter) could be the observable effect of such an inadequacy.
Assuming this point of view, one can propose alternative theories of gravity extending the
Einstein theory (in this sense one deals with modified gravity), keeping its positive results,
without requiring dark components, up to now not detected at experimental level. In this
perspective, it can be shown that the accelerated expansion can be obtained without using new
fundamental ingredients but enlarging the gravitational sector (see for example
Capozziello(2002), Nojiri and Odintsov (2003)).



In particular, it has been recently shown that such theories give models able to reproduce the
Hubble diagram derived from SNela surveys (Capozziello and Faraoni(2010)).
However, also this approach needs new signatures or some experimentum crucis in order to be
accepted or refuted. In particular, exotic astrophysical structures, which cannot be addressed
by standard gravity, could constitute a powerful tool to address this problem. In particular,
strong field regimes of relativistic astrophysical objects could discriminate between General
Relativity and its possible extensions.
The study of relativistic stars in modified gravity could have very interesting consequences to
address this issue. In fact, new theoretical stellar structures emerge and they could have very
important observational consequences constituting the signature for the Extended Gravity (see
e.g. Capozziello et al.(2012)). Furthermore, strong gravitational regimes could be considered if
one assume General Relativity as the weak field limit of some more complicated effective
gravitational theory (Psaltis(2008)). In particular, considering the simplest extension of General
Relativity, namely the f (R) gravity, some models can be rejected because do not allow the
existence of stable star configurations (Bamba et al.(2008), Nojiri and Odintsov(2009)). On
the other hand, stability can be achieved in certain cases due to the so called Chameleon
Mechanism (Tsujikawa et al.(2009)).



We investigate the R2 model with logarithmic [f (R) = R + αR2(1 + βln(R/µ2)] and cubic
[f (R) = R + αR2(1 + γR)] corrections. In particular, we consider the FPS and SLy equations
of state and a case of piecewise EoS for neutron stars with quark cores. One of the results is
that, if cubic term, at some densities, is comparable with the quadratic one, stable star
configurations exist at high central densities. The minimal radius of such stars is close to 9 km
for maximal mass ∼ 1.9M⊙ (SLy equation) or to 8.5 km for mass ∼ 1.7M⊙ (FPS equation).
Clearly, such objects cannot be achieved in the context of General Relativity so their possible
observational evidences could constitute a powerful probe for modified gravity.



Modified TOV equations in f (R) gravity

Let us start from the action for f (R) gravity:

S =
c4

16πG

∫
d4x

√
−gf (R) + Smatter , (1)

where g is determinant of the metric gµν and Smatter is the action of the standard perfect fluid
matter. The field equations for metric gµν can be obtained by varying with respect to gµν . It is
convenient to write function f (R) as

f (R) = R + αh(R), (2)

where h(R) is an arbitrary function.
In this notation, the field equations are

(1 + αhR)Gµν − 1

2
α(h − hRR)gµν − α(∇µ∇ν − gµν�)hR = 8πGTµν/c

4. (3)

Here Gµν = Rµν − 1
2Rgµν is the Einstein tensor and hR =

dh

dR
.



Modified TOV equations in f (R) gravity
Spherically symmetric solution

We are searching for the solutions of these equations assuming a spherically symmetric metric
with two independent functions of radial coordinate, that is:

ds2 = −e2ϕc2dt2 + e2λdr2 + r2(dθ2 + sin2 θdϕ2). (4)

The energy–momentum tensor in the r.h.s. of Eq. (3) is that of a perfect fluid, i.e.
T = diag(ρc2,−P,−P,−P), where ρ is the matter density and P is the pressure.
The components of the field equations are

−8πGρ/c2 = −r−2 + e−2λ(1− 2rλ′)r−2 + αhR(−r−2 + e−2λ(1− 2rλ′)r−2)

−1

2
α(h − hRR) + e−2λα[h′R r

−1(2− rλ′) + h′′R ], (5)

8πGP/c4 = −r−2 + e−2λ(1 + 2rϕ′)r−2 + αhR(−r−2 + e−2λ(1 + 2rϕ′)r−2)

−1

2
α(h − hRR) + e−2λαh′R r

−1(2 + rϕ′), (6)

where prime denotes derivative with respect to radial distance, r .



Modified TOV equations in f (R) gravity

For the exterior solution, a Schwarzschild solution is assumed. For this reason, it is convenient
to define the change of variable (Cooney et al.(2010))

e−2λ = 1− 2GM

c2r
. (7)

The value of parameter M on the surface of a neutron stars can be considered as a
gravitational star mass.
The useful relation

GdM

c2dr
=

1

2

(
1− e−2λ(1− 2rλ′)

)
. (8)

The hydrostatic condition equilibrium, ∇µTµν = 0, for a perfect fluid is

dP

dr
= −(ρ+ P/c2)

dϕ

dr
. (9)

The second TOV equation can be obtained by substitution of the derivative dϕ/dr from (9) in
Eq.(6).



Modified TOV equations in f (R) gravity

The dimensionless variables defined according to the substitutions are used.

M = mM⊙, r → rg r , ρ → ρM⊙/r
3
g , P → pM⊙c

2/r3g , R → R/r2g ,

rg = GM⊙/c
2 = 1.47473 km.

Eqs. (5), (6) can be rewritten as

(
1 + αr2g hR +

1

2
αr2g h

′
R r

)
dm

dr
= 4πρr2 − 1

4
αr2r2g

(
h − hRR − 2

(
1− 2m

r

)(
2h′R
r

+ h′′R

))
,

(10)

8πp = −2
(
1 + αr2g hR

) m

r3
−
(
1− 2m

r

)(
2

r
(1 + αr2g hR) + αr2g h

′
R

)
(ρ+ p)−1 dp

dr
− (11)

−1

2
αr2g

(
h − hRR − 4

(
1− 2m

r

)
h′R
r

)
, ′ = d/dr .



Modified TOV equations in f (R) gravity
Scalar degree of freedom

For non-zero α, one needs the third equation for the Ricci curvature scalar. The trace of field
Eqs. (3) gives the relation

3α�hR + αhRR − 2αh − R = −8πG

c4
(−3P + ρc2). (12)

In dimensionless variables

3αr2g

((
2

r
− 3m

r2
− dm

rdr
−
(
1− 2m

r

)
dp

(ρ+ p)dr

)
d

dr
+

(
1− 2m

r

)
d2

dr2

)
hR + αr2g hRR−

(13)
−2αr2g h − R = −8π(ρ− 3p).

The EoS for matter inside star to the Eqs. (10), (11), (13) is needed. For the sake of simplicity,
one can use the polytropic EoS p ∼ ργ although a more realistic EoS has to take into account
different physical states for different regions of the star and it is more complicated.



Neutron star models in f (R) gravity
Perturbative approach

The solution of Eqs. (10)-(13) can be achieved by using a perturbative approach (see Arapoglu
et al.(2011) for details):

p = p(0)+αp(1)+ ..., ρ = ρ(0)+αρ(1)+ ..., m = m(0)+αm(1)+ ..., R = R(0)+αR(1)+ ...
(14)

The functions ρ(0), p(0), m(0) and R(0) satisfy to standard TOV equations assumed at zeroth
order. Terms containing hR are assumed to be of first order in the small parameter α. We
have, for the m = m(0) + αm(1) and for pressure p = p(0) + αp(1) the following equations

dm

dr
= 4πρr2−αr2

(
4πρ(0)hR +

1

4
(h − hRR)

)
+
1

2
α

((
2r − 3m(0) − 4πρ(0)r3

) d

dr
+ r(r − 2m(0))

d2

dr2

)
hR

(15)
r − 2m

ρ+ p

dp

dr
= 4πr2p +

m

r
− αr2

(
4πp(0)hR +

1

4
(h − hRR)

)
− α

(
r − 3m(0) + 2πp(0)r3

) dhR
dr

.

(16)
The Ricci curvature scalar, in terms containing hR and h, has to be evaluated at O(1) order, i.e.

R ≈ R(0) = 8π(ρ(0) − 3p(0)) . (17)



Neutron star models in f (R) gravity
Equations of state: SLy and FPS

These equations have the same analytical representation:

ζ =
a1 + a2ξ + a3ξ

3

1 + a4ξ
f (a5(ξ−a6))+(a7+a8ξ)f (a9(a10−ξ))+(a11+a12ξ)f (a13(a14−ξ))+ (18)

+(a15+a16ξ)f (a17(a18−ξ)), ζ = log(P/dyncm−2) , ξ = log(ρ/gcm−3) , f (x) =
1

exp(x) + 1
.

The coefficients ai for SLy and FPS EoS are given in Camenzind(2007).
The model of neutron star with a quark core. The quark matter can be described by the
very simple EoS:

pQ = a(ρ− 4B), a = const, B ∼ 60− 90Mev/fm3 (19)

The value a = 0.28 correspons to ms = 250 Mev. For numerical calculations, Eq. (19) is used
for ρ ≥ ρtr , where ρtr is the transition density for which pQ = pFPS or pSLy . For FPS equation,
the transition density is ρtr = 1.069× 1015 g/cm3 (B = 80 Mev/fm3), for SLy equation
ρtr = 1.029× 1016 g/cm3 (B = 60 Mev/fm3).



Neutron star models in f (R) gravity
Model I

The model of quadratic gravity with logarithmic corrections in curvature (Nojiri and
Odintsov(2004)):

f (R) = R + αR2(1 + β ln(R/µ2)), (20)

where |α| < 1 (in units r2g ) and the dimensionless parameter |β| < 1. This model is considered
in (Alavirad and Weller(2012)) for SLy equation. However it is not valid beyond the point
R = 0 and we cannot apply our analysis for stars with central density ρc > 1.72× 1015 g/cm3

(for SLy equation) and for ρc > 2.35× 1015 g/cm3 (for FPS equation). The maximal mass of
neutron star at various values α and β is close to the corresponding one in General Relativity at
these critical densities (for FPS - 1.75M⊙, for SLy - 1.93M⊙). On the other hand, for model
with quark core, the condition R = 8π(ρ(0) − 3p(0)) > 0 is satisfied at arbitrary densities. The
analysis shows that maximal mass is decreasing with growing α. By using a piecewise EoS
(FPS+quark core) one can obtain stars with radii ∼ 9.5 km and masses ∼ 1.50M⊙. In contrast
with General Relativity, the minimal radius of neutron star for this equation is 9.9 km.



Neutron star models in f (R) gravity
Model I
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Figure : The mass-radius diagram (left panel) and the dependence of neutron star mass from central
density (right panel) for neutron stars in f (R) model with a logarithmic correction (20) compared with
General Relativity by using a piecewise FPS+QC equation of state.



Neutron star models in f (R) gravity
Model II

It is interesting to investigate also the R2 model with a cubic correction:

f (R) = R + αR2(1 + γR) . (21)

The case where |γR| ∼ O(1) for large R is more interesting. In this case the cubic term
comparable with quadratic term. Of course we consider the case when αR2(1 + γR) << R. In
this case the perturbative approach is valid although the cubic term can exceed the value of
quadratic term. For small masses, the results coincides with R2 model. For narrow region of
high densities the mass of neutron star is close to the analogue mass in General Relativity with
dM/dρc > 0. This means that this configuration is stable. For α = 5× 109 cm2, γ = −10 (in
units r2g ) the maximal mass of neutron star at high densities ρ > 3.7× 1015 g/cm3 is nearly
1.88M⊙ and radius is about ∼ 9 km (SLy equation). For γ = −20 the maximal mass is
1.94M⊙ and radius is about ∼ 9.2 km. In the General Relativity, for SLy equation, the minimal
radius of neutron stars is nearly 10 km. Therefore such a model of f (R) gravity can give rise to
neutron stars with smaller radii than in General Relativity. For FPS equation of state, we have
the similar situation. Therefore such theory can describe (assuming only the SLy equation), the
existence of peculiar neutron stars with mass ∼ 2M⊙ (the measured mass of PSR J1614-2230
Ozel et al.(2010)) and compact stars (R ∼ 9 km) with masses M ∼ 1.6− 1.7M⊙ (see Ozel et
al.(2009), Guver et al.(2010)).
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Figure : The mass-radius diagram for neutron stars in f (R) model with cubic corrections
(21)(α = 5× 109 cm2) in comparison with General Relativity assuming a SLy equation of state. The
parameters of stable configurations on the second “branch” of stability are 1.80M⊙ < M < 1.89M⊙,
9.04 < R < 9.36 km and 2.95× 1015 < ρc < 3.46× 1015 g/cm3 for γ = −10 and
1.87M⊙ < M < 1.94M⊙, 9.23 < R < 9.7 km and 3.46× 1015 < ρc < 3.89× 1015 g/cm3 for γ = −20.
The parameter γ is measured in units r 2g . For comparison we depicted the M −R relation in GR also for
the dM/dρc < 0. One note that at given values of γ the cubic term is greater than quadratic only at
high densities. For γ = −20 at ρ > 2.5× 1015 g/cm3 (that corresponds to central regions of star) and
its maximum value γR3|max ∼ 3R2. The perturbative approach is valid at these values of parameters.



Conclusion

We considered the mass-radius relations for neutron stars for the R2 models with logarithmic
and cubic corrections. We also investigated the dependence of the maximal mass from the
central density of the structure. In the case of quadratic gravity with logarithmic corrections,
assuming a piecewise equation of state (FPS+quark core), one obtains stellar objects with radii
∼ 9.5 km and masses ∼ 1.50M⊙. In contrast with General Relativity, the neutron star minimal
radius for this equation is 9.9 km. In the case of quadratic gravity with cubic corrections, we
found that, for high central densities (ρ > 10ρns , where ρns = 2.7× 1014 g/cm3 is the nuclear
saturation density) stable star configurations exist. This effect gives rise to more compact stars
than in General Relativity and could be extremely relevant from an observational point of view.
In fact, it is interesting to note that using an equation of state in the framework of f (R)
gravity with cubic term gives rise to two important features: the existence of an upper limit on
neutron star mass (∼ 2M⊙) and the existence of neutron stars with radii R ∼ 9− 9.5 km and
masses ∼ 1.7M⊙. These facts could have a twofold interest: from one side, the approach could
be useful to explain peculiar objects that evade explanation in the framework of standard
General Relativity (e.g. the magnetars) and, from the other side, it could constitute a very
relevant test for alternative gravities.
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