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2The Pierre Auger Observatory

➔Malargüe, Argentina
➔World's largest cosmic ray 

observatory.
➔In operation since 2004. 

Completed in 2008
➔3000 km2

496 members
94 institutions
18 countries

Main goal: 
➢ Research the origin and the nature of Ultra High Energy Cosmic Rays

Physics:
➢ Energy Spectrum
➢ Composition
➢ Photon and neutrino searches
➢ Hadronic Physics
➢ Anisotropies and point sources



3The Observatory: Hybrid detector
Hybrid detector: 

fluorescence +surface detectors

   Independent and complementary:
✔ Improved geometrical reconstruction 

with respect to individual components
✔ Cross-calibration between detectors
✔ Observation of different shower 

components

More than 1600 Water-
Cherenkov tanks

24 fluorescence telescopes 
at 4 sites



4Air shower reconstruction: FD
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➔Longitudinal development of EM shower
➔Calorimetric, almost model-independent 

determination of shower energy
➔“Invisible” energy (f

inv
) carried by ν and HE μ 

(<10%)
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➔ SD energy obtained calibrating with the FD
➔ Different SD regimes → different calibrations
➔ All SD observables show a good correlation 

with the FD

Air shower reconstruction: SD

tank signal vs 
tank distance



6The Spectrum of UHE

● Standard SD array (θ<60º) (■)
● Infill array (750m) (●)

● Inclined events (60º<θ<80º) (▲)
● Hybrid events (FD+≥1SD) (▼)

4 independent measurements using SD and FD:



7The Spectrum of UHE

Ankle - log
10

(E
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1/2

/eV)~19.63

Combined spectrum

● Ankle and flux suppression visible in the combined spectrum.
● Interpretation relies on primary composition and sources distribution



8Mass composition
Shower development → most direct information on composition

● Proton showers are more penetrating and fluctuate more
● Iron shower ~ Σ 56 proton showers with E

p
/56 each:

• Less penetrating (less energetic)
• Less fluctuating (superposition)

FD
 maximum of the EM profile 

SD
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9Mass composition: <X
max

> and RMS(X
max

)

✔ High-quality data set used to determine X
max

 for each shower
✔ FD measurements are very precise: resolution ~ 20 g cm-2

✗ FD only operates on clear moonless nights: reduced statistics
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Mass composition: MPD
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➔Muons travel in straight lines from 
their production point to ground.

➔MPD is the distribution of number 
of muons vs production depth

➔Observable: maximum of the 
distribution Xμ

max

Arrival time → production depth

Xμ
max
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Mass composition: MPD
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Mass composition: MPD

✔  SD observable independent of X
max

. 
✔  Additional insight into hadronic models (muon production)
✗  Small zenith and energy window: θ[55º,65º]



13
Evolution of <X

max
>, σ(X

max
) and <Xμ

max
> with E suggests 

composition becoming heavier up to UHE.

Uncertainties in hadronic 
interactions at UHE hinder the 
interpretation:
➔ increase on mean mass?, or
➔ inedaquate interaction 

models?

<X
max

>, σ(X
max

)

pure

proton

iron
<ln A>, σ2

ln A

Constraint hadronic models

Improve CR measurements

Improve CR interpretation



14Hadronic interactions

➔ Correlation between X
1
 and X

max

➔ f: fraction of most deeply 
penetrating air showers used          
(f = 0.2)

➔ Large values of X
max

 correspond to 
proton rich samples (>80% for f = 0.2)

dN
dXmax

∝ exp(−Xmax / Λ f )

σ p−Air∝Λ f
−1

f chosen so that biases 
from a He

frac
 ≤ 25% are 

below statistical 
uncertainties 
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σ p-Air
prod =[505±22(stat)−36

+28(sys)]mb

σ pp
inel=92±7(stat)−11

+9 (sys)

aaaaaaa±7 (Glauber)mb

✔  Measurement compatible with  
 most  model extrapolations

✔  Highest energy σ
pp

 value
✗  Model dependent

Extended Glauber model +
propagation of param.

uncertainties



16Muon deficit
➔Several methods developed for estimating the muonic part of the 

signal observed in the Cherenkov detectors.
➔All methods yield a muon content in data significantly larger than 

in simulations.
1.6-1.7 1.9-2.0 ≥2



17Summary

➔ Auger provides copious high quality data.

➔ Observables show a coherent behaviour.

➔ Trend to heavy, not pure composition.

➔ Flux suppression: clear observation, unclear 
interpretation (GZK? sources?) 

➔ Highest energy data-derived σ
pp 
compatible with 

extrapolations from accelerator data.
➔ Cosmic Rays physics has potential to set 

constraints on hadronic models
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19BACKUP SLIDES

➢ Energy Scale
➢ Fluorescence Detector Quality Cuts
➢ Spectrum comparison between experiments
➢ Mass composition comparison
➢ Correlation with Point Sources
➢ Photon and neutrino searches

➢ From Λ
f
 to σ

p-Air



20New energy scale

Down from 22% (ICRC 2011) to 14 % (ICRC 2013)



21FD Quality Cuts

1) X
max

 in the Field of view

2) ΔE/E < 20% 

3) Cherenkov Fraction < 50% 

4) Χ2 linear – X2 GH > 4 

5) Hole in the profile < 20% 

6) Vertical Aerosol Optical Distance 
@ 2.5 km < 0.1 

7) Cloud Coverage < 25% 

8) Fiducial volume cuts (avoid 
systematics due to 1) )

9) Reject bad/saturated pixels from FD 
reconstruction, and

10)  Request at least 5 pixels for the axis 
reconstruction

11) ΔX
max

 < 40 gr cm-2 

12) X2 GH/ndf < 2.5 

13) Hottest station distance to core < 
750m 



22Spectrum

➢ Scale difference due to different energy assignment
➢ All experiments except AGASA show GZK-like cut-off at the highest 

energies
➢ Are the rest compatible?



23Mass composition

(1) P. Sokolsky et al. Hires Collaboration. Nucl. Phys. B- Proc. Supp. 212,74 (2011)
(2) H.Sagawa et al. Telescope Array Collaboration AIP Conf. Proc. 1367, 244 (2010) 
(3) M. Unger for the Pierre Auger and Yakutks Collaborations EPJ Web Conf. 53 (2013) 01006

● HiRes X
max

 and σ(X
max

) (1), Telescope array X
max 

(2), Yakutsk X
max 

(3)
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➢ Auger results are compatible to those of TA and Yakutsk within systematics 
uncertainties, but not with HiRes

➢ TA,Yakutsk and HiRes compatible within 5 g cm-2

➢ Chemical evolution is an unsettled issue

From M. Unger for the Pierre Auger and Yakutks Collaborations EPJ Web Conf. 53 (2013) 01006

Results are converted to <ln A> to be comparable, using QGSJETII (left) and Sibyll (right)
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26Correlation with point sources

➔ Correlation 33±5%

➔ Chance probability from a random 
distribution < 1%

Upward fluctuation

Events above 55 EeV, AGNs within 75 Mpc, angular scale 3.1º.

No “fading” signal (10 events 
means are consistent)
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Distribution of the events with E > 55 EeV in angular windows of 3.1º 
around AGNs within 75 Mpc

Centaurus A



28Photon and neutrino detection

p+γCMB→Δ(1232)→π0+p ,π0→γ γ

aaaaaaaaaaaaabi→π-+n ,π-→μ- ν



Top-down models

p
   

    B  
   

1) Smoking-gun signature of the GZK effect
2) Top-down production models predict large 

fractions of   and 
3) Astrophysics potential:   and   travel in 

straight lines and point to their production 
sites. Probes of source location and 
acceleration mechanisms.



29Neutrinos

➔No candidates found in the 
search period

➔Upper limit established

Essentially muons at ground level

Electromagnetic-rich inclined showers

Inclined hadronic shower

Neutrino shower



30Photons

-induced showers 

● Purely electromagnetic showers
● Deep X

max

● Slow shower development
● Large spread of ground signals
 

➔No candidates found in 
the search period.

➔Upper limit established.
➔Top-down models very 

disfavored



31From Λ
f
 to σ

p-Air
: proton fraction-tail slope



32From Λ
f
 to σ

p-Air



33New hadronic models

➔Change in hadronic models changes 
the simulation of shower 
development and hence CR results.

➔But consistency of CR results 
constrains hadronic models as well.
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