Correlation between multiplicities in windows separated in azimuth and rapidity

Vladimir Vechernin

St.-Petersburg State University

2 October 2013

- \diamond Connection of the forward-backward (FB) correlation coefficient *b* with two-particle correlation function C_2
- \diamond The *b* and *C*₂ in the model with independent identical emitters (strings)
- Fitting of the model parameters by FB multiplicity correlations between two small windows, separated in azimuth and rapidity
- \diamondsuit Comparison of the FB correlation in large 2π windows with the model results
- ♦ Conclusions

Definitions

Connection of the FB correlation coefficient with two-particle correlation function - 1

Traditionally one uses the following definition of the FB correlation coefficient:

$$b_{abs} \equiv \frac{\langle n_F n_B \rangle - \langle n_F \rangle \langle n_B \rangle}{D_{n_F}} \quad \text{where} \quad D_{n_F} = \langle n_F^2 \rangle - \langle n_F \rangle^2 \qquad (1)$$

To avoid the trivial influence of absolute values of n_F and n_B on the correlation coefficient we go to the relative or scaled observables:

$$\nu_F = n_F / \langle n_F \rangle \quad \text{and} \quad \nu_B = n_B / \langle n_B \rangle \tag{2}$$

For these observables

$$b_{rel} = \frac{\langle \nu_F \nu_B \rangle - 1}{\langle \nu_F^2 \rangle - 1} = \frac{\langle n_F \rangle}{\langle n_B \rangle} \, b_{abs} \; . \tag{3}$$

Definitions

Connection of the FB correlation coefficient with two-particle correlation function - 2

The two-particle correlation function C_2 is defined through the inclusive ρ_1 and double inclusive ρ_2 distributions:

$$C_2(\eta_F, \phi_F; \eta_B, \phi_B) = \frac{\rho_2(\eta_F, \phi_F; \eta_B, \phi_B)}{\rho_1(\eta_F, \phi_F)\rho_1(\eta_B, \phi_B)} - 1$$
(4)

$$\rho_1(\eta,\phi) = \frac{d^2 N}{d\eta \, d\phi} , \qquad \rho_2(\eta_F,\phi_F;\eta_B,\phi_B) = \frac{d^4 N}{d\eta_F \, d\phi_F \, d\eta_B \, d\phi_B} \quad (5)$$

For a small window $\delta\eta\,\delta\phi$ around η , ϕ we have

$$\rho_1(\eta,\phi) \equiv \frac{\langle n \rangle}{\delta \eta \, \delta \phi} \,, \tag{6}$$

here $\langle n \rangle$ is the mean multiplicity in the acceptance $\delta \eta \, \delta \phi$.

For two small windows: $\delta\eta_F \,\delta\phi_F$ around η_F , ϕ_F and $\delta\eta_B \,\delta\phi_B$ around η_B , ϕ_B we have

$$\rho_2(\eta_F, \phi_F; \eta_B, \phi_B) \equiv \frac{\langle n_F n_B \rangle}{\delta \eta_F \, \delta \phi_F \, \delta \eta_B \, \delta \phi_B} \,. \tag{7}$$

The formulae (6) and (7) are the base for the experimental measurement of the one- and two-particle densities of charge particles ρ_1 and ρ_2 , and hence of the two-particle correlation function C_2 (4), for which by (6) and (7) we have:

$$C_2(\eta_F, \phi_F; \eta_B, \phi_B) \equiv \frac{\langle n_F n_B \rangle - \langle n_F \rangle \langle n_B \rangle}{\langle n_F \rangle \langle n_B \rangle} .$$
(8)

where n_F and n_B are the event multiplicities in these two small windows.

Comparing with traditional definition of the FB correlation coefficient (1), for small FB windows by (8) we have

$$b_{rel} = \frac{\langle n_F \rangle^2}{D_{n_F}} C_2(\eta_F, \phi_F; \eta_B, \phi_B)$$
(9)

Note that for small forward window:

$$D_{n_F} = \langle n_F \rangle [1 + \langle n_F \rangle C_2(\eta_F, \phi_F; \eta_F, \phi_F)] , \qquad (10)$$

$$b_{rel} = \frac{\langle n_F \rangle}{1 + \langle n_F \rangle C_2(\eta_F, \phi_F; \eta_F, \phi_F)} C_2(\eta_F, \phi_F; \eta_B, \phi_B)$$
(11)

So by (11) we see that the traditional definition of the FB correlation coefficient in the case of small observation windows coincides with the standard definition of two-particle correlation function C_2 upto some common factor, which depends on the width of the forward window.

1-4 October 2013 (St.-Petersburg)

II RSC

One can go in C_2 to the variables:

$$\eta_{sep} = \eta_F - \eta_B , \qquad \eta_C = (\eta_F + \eta_B)/2 \qquad (12)$$

$$\phi_{sep} = \phi_F - \phi_B , \qquad \phi_C = (\phi_F + \phi_B)/2$$
(13)

and using the connection (8) or (11) check up *experimentally* the dependence of the two-particle correlation function C_2 on η_C for the different configurations and separations between FB observation windows. In the central rapidity region

$$C_2(\eta_F, \phi_F; \eta_B, \phi_B) = C_2(\eta_{sep}, \phi_{sep})$$
(14)

and for small windows we have

$$D_{n_F} = \langle n_F \rangle [1 + \langle n_F \rangle C_2(0,0)] , \qquad (15)$$

$$b_{rel} = \frac{\langle n_F \rangle}{1 + \langle n_F \rangle C_2(0,0)} C_2(\eta_{sep}, \phi_{sep})$$
(16)

For windows of arbitrary width in azimuth and rapidity, situated in the central rapidity region, a model-independent way, we obtain:

$$D_{n_F} = \langle n_F \rangle [1 + \langle n_F \rangle I_{FF}] , \qquad (17)$$

$$b_{rel} = \frac{\langle n_F \rangle}{1 + \langle n_F \rangle I_{FF}} I_{FB}(\eta_{sep}, \phi_{sep})$$
(18)

where

$$I_{FB}(\eta_{sep}, \phi_{sep}) = \frac{1}{\delta y_F \delta \varphi_F \delta y_B \delta \varphi_B} \int_{\delta y_F \delta \varphi_F} dy_1 d\varphi_1 \int_{\delta y_B \delta \varphi_B} dy_2 d\varphi_2 C_2(\eta_1 - \eta_2; \phi_1 - \phi_2)$$
(19)

$$I_{FF} = \frac{1}{(\delta y_F \delta \varphi_F)^2} \int_{\delta y_F \delta \varphi_F} dy_1 d\varphi_1 \int_{\delta y_F \delta \varphi_F} dy_2 d\varphi_2 C_2(\eta_1 - \eta_2; \phi_1 - \phi_2)$$
(20)

A.Capella, A.Krzywicki, Phys.Rev.D18, 4120 (1978). C.Pruneau, S.Gavin, S.Voloshin, Phys.Rev.C66, 044904 (2002).

1-4 October 2013 (St.-Petersburg)

II RSC

The model

Model with independent identical emitters - 1

$$\rho_1^N(\eta) = N\lambda_1(\eta) , \qquad (21)$$

 $\rho_2^N(\eta_F, \eta_B; \phi_{sep}) = N\lambda_2(\eta_F, \eta_B; \phi_{sep}) + N(N-1)\lambda_1(\eta_F)\lambda_1(\eta_B) .$ (22)

Then after averaging over N the one- and two-particle densities of charge particles are given by

$$\rho_1(\eta) = \langle N \rangle \lambda_1(\eta) , \qquad (23)$$

 $\rho_2(\eta_F, \eta_B; \phi_{sep}) = \langle N \rangle [\lambda_2(\eta_F, \eta_B; \phi_{sep}) - \lambda_1(\eta_F) \lambda_1(\eta_B)] + \langle N^2 \rangle \lambda_1(\eta_F) \lambda_1(\eta_B)$ (24)

and

$$\rho_2(\eta_F, \eta_B; \phi_{sep}) - \rho_1(\eta_F)\rho_1(\eta_B) =$$
(25)

 $= \langle N \rangle [(\lambda_2(\eta_F, \eta_B; \phi_{sep}) - \lambda_1(\eta_F) \lambda_1(\eta_B)] + \frac{D_N}{\lambda_1(\eta_F)} \lambda_1(\eta_B) ,$

where D_N is the event-by-event variance $D_N = \langle N^2 \rangle - \langle N \rangle^2$ of the number of emitters.

M.A.Braun, C.Pajares, V.V., Phys.Lett.B493, 54 (2000).

The model

Model with independent identical emitters - 2

Then we find

$$C_2(\eta_F, \eta_B; \phi_F - \phi_B) = \frac{\Lambda(\eta_F, \eta_B; \phi_F - \phi_B) + \omega_N}{\langle N \rangle}$$
,

where ω_N is the event-by-event scaled variance $\omega_N = D_N/\langle N \rangle$ of the number of emitters and

$$\Lambda(\eta_F, \eta_B; \phi_F - \phi_B) = \frac{\lambda_2(\eta_F, \eta_B; \phi_F - \phi_B)}{\lambda_1(\eta_F)\lambda_1(\eta_B)} - 1$$
(26)

is the two-particle correlation function for charged particles produced from a decay of a single emitter (string).

A.Capella, A.Krzywicki, Phys.Rev.D18, 4120 (1978).

Model with independent identical emitters - 3

In the central rapidity region, where each string contributes to the particle production in the whole rapidity region, one has the translation invariance in rapidity

$$\lambda_1(\eta) = \mu_0 = const , \qquad \Lambda(\eta_F, \eta_B; \phi_{sep}) = \Lambda(\eta_F - \eta_B; \phi_{sep}) , \quad (27)$$

then

$$\rho_1(\eta) = \langle N \rangle \mu_0 = const , \qquad (28)$$

$$C_2(\eta_{sep}, \phi_{sep}) = \frac{\Lambda(\eta_{sep}, \phi_{sep}) + \omega_N}{\langle N \rangle} .$$
(29)

So we see that this common "pedestal" in $C_2(\eta_{sep}, \phi_{sep})$ is physically important. By (29) we see that from the height of the "pedestal" $(\omega_N / \langle N \rangle)$ one can obtain the important physical information on the magnitude of the fluctuation of the number of emitters N at different energies and centrality fixation.

FB correlation in the model - 1

FB multiplicity correlation strength b_{rel} in the case of the observation windows of arbitrary width in azimuth and rapidity, which are situated in the central rapidity region, are given by

$$b_{rel} = \frac{[\omega_N + J_{FB}(\eta_{sep}, \phi_{sep})]\mu_0 \delta_F}{1 + [\omega_N + J_{FF}]\mu_0 \delta_F} , \qquad (30)$$

(the relative variables are using, V.V. arXiv:1210.7588, 1305.0857), where

$$J_{FB}(\eta_{sep},\phi_{sep}) = \frac{1}{\delta\eta_F \delta\phi_F \delta\eta_B \delta\phi_B} \int_{\delta\eta_F \delta\phi_F} d\eta_1 d\phi_1 \int_{\delta\eta_B \delta\phi_B} d\eta_2 d\phi_2 \Lambda(\eta_1 - \eta_2;\phi_1 - \phi_2) ,$$
(31)

$$J_{FF} = \frac{1}{(\delta\eta_F \delta\phi_F)^2} \int_{\delta\eta_F \delta\phi_F} d\eta_1 d\phi_1 \int_{\delta\eta_F \delta\phi_F} d\eta_2 d\phi_2 \Lambda(\eta_1 - \eta_2; \phi_1 - \phi_2) , \quad (32)$$

 $\Lambda(\eta; \phi) \text{ is the pair correlation function for a single string,} \\ \omega_N = \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle} \text{ is the e-by-e scaled variance of the number of strings,} \\ \delta_F \equiv \delta \eta_F \delta \phi_F / 2\pi \text{ is the acceptance of the forward window,} \\ \mu_0 \text{ is the average rapidity density of the charged particles from one string.} \\ 14 \text{ October 2013 (St-Petersburg)} \qquad \text{II RSC} \qquad \text{V. Vechemin} \quad 12 / 32 \\ \text{$

FB correlation in the model - 2

 $\eta_{sep},~\phi_{sep}$ are the separations between the centers of FB windows in rapidity and azimuth.

$$b_{rel} = b^{LR} + b^{SR} , \qquad (33)$$

$$b^{LR} = \frac{\omega_N \mu_0 \delta_F}{1 + [\omega_N + J_{FF}] \mu_0 \delta_F} , \qquad (34)$$

$$b^{SR} = \frac{\mu_0 \delta_F}{1 + [\omega_N + J_{FF}] \mu_0 \delta_F} J_{FB}(\eta_{sep}, \phi_{sep})$$
(35)

The Long-Range (LR) contribution arising due to e-by-e fluctuation in the number of emitters (strings).

The Short-Range (SR) contribution originating from the pair correlation function $\Lambda(\eta; \phi)$ of a single string.

Note that at $\Lambda(\eta, \phi) = 0$ we have $J_{FB} = J_{FF} = 0$ and $b_{\Lambda=0}^{SR} = 0$, but

$$b_{rel}^{\Lambda=0} = b_{\Lambda=0}^{LR} = rac{\omega_N \mu_0 \delta_F}{1 + \omega_N \mu_0 \delta_F}
eq 0 \; .$$

M.A.Braun, R.S.Kolevatov, C.Pajares, V.V., Eur.Phys.J.C32, 535 (2004).

FB correlation in the model - 3

Note that by (31) and (32) for windows of small acceptances in rapidity and azimuth, when $\delta\eta \ll \eta_{cor}$ and $\delta\phi \ll \phi_{cor}$ (where η_{cor} and ϕ_{cor} are the characteristic correlation lengthes, defined by the behavior of the pair correlation function $\Lambda(\eta, \phi)$ (39) of a single string), we have

$$J_{FB}(\eta_{sep}, \phi_{sep}) \approx \Lambda(\eta_{sep}, \phi_{sep}) , \qquad (36)$$

$$J_{FF} \approx \Lambda(0,0)$$
 (37)

and the formula (30) takes the simple form

$$b_{rel} \approx \frac{[\omega_N + \Lambda(\eta_{sep}, \phi_{sep})]\mu_0 \delta_F}{1 + [\omega_N + \Lambda(0, 0)]\mu_0 \delta_F} , \qquad (38)$$

which enables to fit the model parameters by experimental observation of the FB correlations between two small windows, varying the separation between these windows in azimuth and rapidity.

The pair correlation function of a single string

The parametrization for the pair correlation function $\Lambda(\eta, \phi)$ of a single string (basing on the Schwinger mechanism of a string decay, V.V. arXiv:1210.7588):

$$\Lambda(\eta,\phi) = \Lambda_1 e^{-\frac{|\eta|}{\eta_1}} e^{-\frac{\phi^2}{\phi_1^2}} + \Lambda_2 \left(e^{-\frac{|\eta-\eta_0|}{\eta_2}} + e^{-\frac{|\eta+\eta_0|}{\eta_2}} \right) e^{-\frac{(\phi-\pi)^2}{\phi_2^2}} .$$
(39)

This formula has the nearside peak, characterizing by parameters Λ_1 , η_1 and ϕ_1 , and the awayside ridge-like structure, characterizing by parameters Λ_2 , η_2 , η_0 and ϕ_2 (two wide overlapping hills shifted by $\pm \eta_0$ in rapidity, η_0 - the mean length of a string decay segment). We imply that in formula (39)

$$|\phi| \le \pi \ . \tag{40}$$

If $|\phi| > \pi$, then we use the replacement $\phi \to \phi + 2\pi k$, so that (40) was fulfilled. With such completions the $\Lambda(\eta, \phi)$ meets the following properties

$$\Lambda(-\eta,\phi) = \Lambda(\eta,\phi) , \quad \Lambda(\eta;-\phi) = \Lambda(\eta,\phi) , \quad \Lambda(\eta,\phi+2\pi k) = \Lambda(\eta,\phi)$$
(41)

The model

Calculation of the integrals

The integrals (31) and (32) in the case of symmetric arbitrary windows $\delta \eta_F = \delta \eta_F \equiv \delta \eta$ and $\delta \phi_F = \delta \phi_F \equiv \delta \phi$ reduce to

$$J_{FB}(\eta_{sep}, \phi_{sep}) = (\delta\eta\delta\phi)^{-2} \int_{-\delta\eta}^{\delta\eta} d\eta \int_{-\delta\phi}^{\delta\phi} d\phi \Lambda(\eta + \eta_{sep}, \phi + \phi_{sep}) t_{\delta\eta}(\eta) t_{\delta\phi}(\phi) ,$$
(42)

$$J_{FF} = I_{FB}(0,0) = (\delta\eta\delta\phi)^{-2} \int_{-\delta\eta}^{\delta\eta} d\eta \int_{-\delta\phi}^{\delta\phi} d\phi \Lambda(\eta,\phi) t_{\delta\eta}(\eta) t_{\delta\phi}(\phi) = 0$$

$$=4(\delta\eta\delta\phi)^{-2}\int_0^{\delta\eta}d\eta\int_0^{\delta\phi}d\phi\,\Lambda(\eta;\phi)\,(\delta\eta-\eta)\,(\delta\phi-\phi)\;.$$
 (43)

where $t_{\delta y}(y)$ is a "triangular" weight function arising at integration due to phase:

$$t_{\delta y}(y) = \left[\theta(-y)(\delta y + y) + \theta(y)(\delta y - y)\right]\theta(\delta y - |y|) .$$
(44)

Then the η - ϕ factorization for near and away side contributions in the fit (39) for $\Lambda(\eta; \phi)$ enables to reduce the (42) and (43) to single integrals.

Fitting of model parameters by FBC in small windows - 1

Fitting of model parameters by FBC in small windows - 2

II RSC

Fitting of model parameters by FBC in small windows - 3

Results of the fitting of the model parameters by FB correlations between two small windows, separated in azimuth and rapidity:

\sqrt{s} , TeV		0.9	7.0
LRC	$\mu_0 \omega_N$	0.7	2.1
SRC	$\mu_0 \Lambda_1$	1.5	2.3
	η_1	0.75	0.75
	ϕ_1	1.2	1.1
	$\mu_0 \Lambda_2$	0.4	0.4
	η_2	2.0	2.0
	ϕ_2	1.7	1.7
	η_0	0.9	0.9

 $\omega_N = \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle}$ is the e-by-e scaled variance of the number of strings, μ_0 is the average rapidity density of the charged particles from one string, i=1 corresponds to the nearside and i=2 to the awayside contributions, η_0 is the mean length of a string decay segment. *I.Altsybeev, PhD Thesis, SPbSU, 2013. G.Feofilov et al. (for ALICE Collaboration), PoS (Baldin ISHEPP XXI) 075, 2012.* Comparison with experiment

Comparison of FBC in large 2π windows with SM - 1

II RSC

Comparison of FBC in large 2π windows with SM - 2

Comparison with experiment

Comparison of FBC in large 2π windows with SM - 3

1-4 October 2013 (St.-Petersburg)

II RSC

Conclusion

Conclusions

- The observation of multiplicity-multiplicity correlation with *two* small (in azimuth and rapidity) windows, enables to measure the two-particle correlation function C_2 in accordance with the standard definition [see (4) and (8)] even in the case of nonhomogeneous distributions without using the event mixing procedure.
- The model with strings as independent identical emitters well describes the FB multiplicity correlation in large 2π windows, when its parameters are fitted by the correlation in small windows.
- The relative contribution of the Long-Range Correlation (LRC), originating from e-by-e fluctuation in the number of emitters (strings), considerably increases with the energy growth from 0.9 to 7 TeV in comparison with the contribution of the Short-Range Correlations (SRC), originating from the pair correlation function of a single string, which remains practically the same.
- The scaled variance ω_N of the e-by-e fluctuations in number of emitting sources increases three times from 0.9 to 7 TeV.

Backup slides - 1

Fitting the model parameters at 2.76 TeV

At present we have not the experimental value of FB correlation coefficient b_{rel} with small windows ($\delta\eta = 0.2$, $\delta\phi = \pi/4$) at the 2.76 TeV energy for fitting of the model parameters at this energy. So for a rude evaluation we take the mean value of the parameters at 0.9 and 7 TeV:

\sqrt{s} , TeV		0.9	2.76	7.0
LRC	$\mu_0\omega_N$	0.7	1.4	2.1
SRC	$\mu_0 \Lambda_1$	1.5	1.9	2.3
	η_1	0.75	0.75	0.75
	ϕ_1	1.2	1.15	1.1
	$\mu_0 \Lambda_2$	0.4	0.4	0.4
	η_2	2.0	2.0	2.0
	ϕ_2	1.7	1.7	1.7
	η_0	0.9	0.9	0.9

Then with these parameters we have:

Backup - 1

Comparison of FBC in large 2π windows with SM

Backup slides - 2

Backup slides - 2

Connection between two-particle and di-hadron correlations1

The di-hadron correlation function

$$C(\Delta y, \Delta \phi) \equiv S/B - 1 \tag{45}$$

takes into account all possible pair combinations of particles produced in given event in some ONE LARGE pseudorapidity window $\Delta y \in (-Y, Y)$, where

$$S = \frac{d^2 N}{d\Delta y \, d\Delta \phi} \tag{46}$$

and the B is the same but in the case of uncorrelated particle production. Experimentalists obtain the B by the event mixing procedure. We can express the enumerator of (45) through the two-particle correlation function:

$$S(\Delta y, \Delta \phi) = \int_{-Y/2}^{Y/2} dy_1 dy_2 \,\rho_2(y_1, y_2; \,\Delta \phi) \,\delta(y_1 - y_2 - \Delta y) \tag{47}$$

Backup - 2

Connection between two-particle and di-hadron correlations2

In the central rapidity region, when the translation invariance takes place within the whole rapidity interval (-Y/2, Y/2), we have

$$\rho_2(y_1, y_2; \Delta \phi) = \rho_2(y_1 - y_2; \Delta \phi)$$

and one can fulfill the integration in (47):

$$S(\Delta y, \Delta \phi) = \rho_2(\Delta y; \Delta \phi) t_{Y}(\Delta y)$$
(48)

where the $t_Y(\Delta y)$ is a "triangular" weight function

$$t_{\delta\eta}(y) = \left[\theta(-y)(\delta\eta + y) + \theta(y)(\delta\eta - y)\right]\theta(\delta\eta - |y|) .$$
(49)

Puc.: The "triangular" weight function arising due to phase space .

Connection between two-particle and di-hadron correlations3

In the denominator of (45) we should replace the $\rho_2(y_1, y_2; \Delta \phi)$ by the product $\rho_1(y_1)\rho_1(y_2)$, which due to the translation invariance in rapidity reduces simply to ρ_0^2 . Then

$$B(\Delta y, \Delta \phi) = \rho_0^2 t_{\rm Y}(\Delta y) . \tag{50}$$

Substituting into (45) we get

$$C(\Delta y, \Delta \phi) = \frac{\rho_2(\Delta y; \Delta \phi)}{\rho_0^2} - 1 = C_2(\Delta y, \Delta \phi) , \qquad (51)$$

We see that if the translation invariance in rapidity takes place within the whole interval (-Y/2, Y/2), then the definition (45) for the di-hadron correlation function C leads to the standard two-particle correlation function C_2 (4) (see meanwhile the remark below).

Comments on the event mixing - 1

In the framework of the model with strings as independent identical emitters we have for the enumerator and the denominator of (45):

$$S(\Delta y, \Delta \phi) = \rho_2(\Delta y; \Delta \phi) t_{\mathsf{Y}}(\Delta y) == \langle \rho_2^{\mathsf{N}}(\Delta y; \Delta \phi) \rangle t_{\mathsf{Y}}(\Delta y) = (52)$$
$$= [\langle \mathsf{N} \rangle \mathsf{A}(\Delta y, \Delta \phi) + \langle \mathsf{N}^2 \rangle] \mu_0^2 t_{\mathsf{Y}}(\Delta y) ,$$
$$B(\Delta y, \Delta \phi) = \int_{-\mathsf{Y}/2}^{\mathsf{Y}/2} dy_1 dy_2 \, \rho_1(y_1) \rho_1(y_2) \, \delta(y_1 - y_2 - \Delta y) =$$
$$= \int_{-\mathsf{Y}/2}^{\mathsf{Y}/2} dy_1 dy_2 \, \langle \rho_1^{\mathsf{N}}(y_1) \rangle \langle \rho_1^{\mathsf{N}}(y_2) \rangle \, \delta(y_1 - y_2 - \Delta y) =$$
$$= \rho_0^2 t_{\mathsf{Y}}(\Delta y) = \langle \mathsf{N} \rangle^2 \mu_0^2 t_{\mathsf{Y}}(\Delta y) , \tag{53}$$

we have noted that $\lambda_1(y) = \mu_0$. Then by C = S/B - 1 we get

$$C(\Delta y, \Delta \phi) = \frac{\omega_N + \Lambda(\Delta y, \Delta \phi)}{\langle N \rangle} = C_2(\Delta y, \Delta \phi) , \qquad (54)$$

Comments on the event mixing - 2

But if instead of (53) one has

$$B(\Delta y, \Delta \phi) = \int_{-Y/2}^{Y/2} dy_1 dy_2 \langle \rho_1^N(y_1) \rho_1^N(y_2) \rangle \, \delta(y_1 - y_2 - \Delta y) = \langle N^2 \rangle \mu_0^2 \, t_Y(\Delta y)$$

as it sometimes takes place in a di-hadron data analysis (or if some other artificial normalization conditions for the $B(\Delta y, \Delta \phi)$ are being used), then instead of (54) by C = S/B - 1 we get

$$C(\Delta y, \Delta \phi) = \frac{\langle N \rangle}{\langle N^2 \rangle} \Lambda(\Delta y, \Delta \phi) , \qquad (55)$$

which does not correspond to the standard two-particle correlation function $C_2(\Delta y, \Delta \phi)$, defined by (4). Compare (55) with (54) we see that in this case the resulting $C(\Delta y, \Delta \phi)$ does not have an additional contribution reflecting the event-by-event fluctuation in the number of emitters. It depends only on the pair correlation function of a single string $\Lambda(\Delta y, \Delta \phi)$ and, therefore, is equal to zero in the absence of the pair correlation from one string.