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Definitions

Connection of the FB correlation coefficient

with two-particle correlation function - 1

Traditionally one uses the following definition of the FB correlation
coefficient:

babsz<”F”B>;<”F><”B> where  Dp_ = (n2) — (np)? (1)

ne

To avoid the trivial influence of absolute values of ng and ng on the
correlation coefficient we go to the relative or scaled observables:

ve =ng/(ng) and v =ng/(ng) (2)
For these observables

b (vevg) —1 _ (ng) b 3)

rel — <I/,2_—> -1 <nB> abs -

1-4 October 2013 (St.-Petersburg) Il RSC V. Vechernin 3 /32



Definitions

Connection of the FB correlation coefficient

with two-particle correlation function - 2

The two-particle correlation function C; is defined through the inclusive py
and double inclusive p; distributions:

p2(nF, oFinB. $B)
p1(ne, oF)p1(ns, ¢8) ' )

G(nr, oFinB, PB) =

d2N d*N
For a small W|ndow 0nd¢ around 7, ¢ we have
(">

here (n) is the mean multiplicity in the acceptance 07 d¢.
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Small windows

Connection of the FB correlation coefficient

with two-particle correlation function - 3

For two small windows: dnr d¢fF around g, ¢F and dng d¢g around 7,
¢ we have

p2(nE, bF; 1B, $B) = onF 5?,525?3 opp v

The formulae (6) and (7) are the base for the experimental measurement
of the one- and two-particle densities of charge particles p; and ps, and
hence of the two-particle correlation function G, (4),

for which by (6) and (7) we have:

(ngng) — (ng)(ng) ' 8)

C(nF, ¢FinB, 98) = <nF><nB>

where n and ng are the event multiplicities in these two small windows.
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Small windows

Connection of the FB correlation coefficient

with two-particle correlation function - 4

Comparing with traditional definition of the FB correlation coefficient (1),
for small FB windows by (8) we have

<”F>2
D

bre; = G(nr, oFimB, OB) (9)

e

Note that for small forward window:
Dn,: = <nF>[1+<nF>C2(nFa¢F;77F)¢F)] ) (10)

(ng)
1+ (ng) Ca(nF, oF;mF, OF)
So by (11) we see that the traditional definition of the FB correlation
coefficient in the case of small observation windows coincides with the
standard definition of two-particle correlation function C; upto some

common factor, which depends on the width of the forward window.
1-4 October 2013 (St.-Petersburg) Il RSC V. Vechernin 6 /32

G(ne, dFimB, ¥8B) (11)

brel =



Small windows

Connection of the FB correlation coefficient

with two-particle correlation function - 5

One can go in (; to the variables:

Nsep = 1NF — 1B nc = (nr +ng)/2 (12)
Gsep = OF — ¢B , oc = (oF + ¢B)/2 (13)

and using the connection (8) or (11) check up experimentally the
dependence of the two-particle correlation function C, on 7¢ for the
different configurations and separations between FB observation windows.
In the central rapidity region

C2(77F’ OF; B, ¢B) =G (nsepa ¢sep) (14)
and for small windows we have
Dn, = (ng)[1 + (ng) C2(0,0)] , (15)
n
bre) = < F> C2("75ep, d)sep) (16)

1+ (n)G(0,0)
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Large windows

Connection of the FB correlation coefficient

with two-particle correlation function - 6

For windows of arbitrary width in azimuth and rapidity, situated in the
central rapidity region, a model-independent way, we obtain:

D, = (ne)[L+ {np ] (17)
(ng)
bre = ——] ) 18

/ 1+ <nF>/FF FB(T]sep ¢sep) ( )

where

1
Ir8(Nsep; Psep) = / dy1dy / dy2dp2 Co(ni—2; p1—p2
FB( sep Sep) (5}/,:590,:5}/35@3 5y,_-6<p,_-1 ' 6y36g032 ? ( )
(19)
1
IFF= 53 dyrdpr dyadpy Go(m—m2; 1—¢2)  (20)
(5yF590F) dypdpe Oypdpp

A.Capella, A.Krzywicki, Phys.Rev.D18, 4120 (1978).
C.Pruneau, S.Gavin, S.Voloshin, Phys.Rev.C66, 044904 (2002).
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The model

Model with independent identical emitters - 1

pl (1) = NAi(n) (21)
5 (NFs Ng; Gsep) = NX2(F, ngi dsep) + N(N — 1)A1(np)Ma(ng) - (22)

Then after averaging over N the one- and two-particle densities of charge
particles are given by

p1(n) = (N)A1(n) , (23)
P2(NEs M Psep) = (N)[A2(ng, ng; ¢sep)—)\1(771—'))\1(773)]+(N2>)\1(77F)>\1((2771§)
4
and
P2(NF Mg Psep) — p1(MF)P1(NB) = (25)

= (M[(A2(g, ng: Psep) — A (me) A1 (ng)] + DyAi(ne)Ai(ng)

where Dy is the event-by-event variance Dy = (N?) — (N)? of the number
of emitters.
M.A.Braun, C.Pajares, V.V., Phys.Lett.B493, 54 (2000).
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The model

Model with independent identical emitters - 2

Then we find

Co(np, 1g: dF — o) = ee: or- a)bon

where wy is the event-by-event scaled variance wy = Dy /(N) of the
number of emitters and

b8) = Xo(ng,ng: OF — ¢B)
M(ng)M(ng)

is the two-particle correlation function for charged particles produced from
a decay of a single emitter (string).

Nng,ng; dF — -1 (26)

A.Capella, A.Krzywicki, Phys.Rev.D18, 4120 (1978).
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The model

Model with independent identical emitters - 3

In the central rapidity region, where each string contributes to the particle
production in the whole rapidity region, one has the translation invariance
in rapidity

)\1(77) = Wo = const , /\(annB; ¢sep) = /\(77F —NBi ¢sep) ) (27)
then
p1(n) = (N)pg = const , (28)
N(Nseps Pse
C2(775ep> ¢sep) - (77 P ?N;J) + wn . (29)

So we see that this common “pedestal” in Co(7sep, Psep) is physically
important. By (29) we see that from the height of the “pedestal” (wy/(N))
one can obtain the important physical information on the magnitude of the
fluctuation of the number of emitters N at different energies and centrality
fixation.
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The model
FB correlation in the model - 1

FB multiplicity correlation strength b, in the case of the observation

windows of arbitrary width in azimuth and rapidity, which are situated in

the central rapidity region, are given by

[WN + JFB(nsepa Qbsep)]uo(sF
1+ [wy + JFF]MO(SF ’

(the relative variables are using, V.V. arXiv:1210.7588, 1305.0857), where

brer = (30)

1
JFB(Nsep, Psep) = —— dmdey dnadda N(n1—=n2; p1—¢2) ,
(rsep: 9ses) ONpdPpingdpg npddr ongdog ( )
(31)
1
Jrr = / dnldgbl/ dnpdgo N(m—mn2; 01—02) , (32
(0ne0PE)? sy, 50, Sp6e ( ) 2
A(n; @) is the pair correlation function for a single string,
wy = W is the e-by-e scaled variance of the number of strings,

dp = 0ngd¢p/2m is the acceptance of the forward window,

Lo is the average rapidity density of the charged particles from one string.
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The model
FB correlation in the model - 2

Nsepr Psep are the separations between the centers of FB windows in
rapidity and azimuth.

brel = bLR + bSR ) (33)
1)
pLR — WNHOF 7 34
1+ [wn + JFr]gde (34)
)
bSR HoF JFB(nsepa (bsep) (35)

T 1 [wn + JrFligdr
The Long-Range (LR) contribution arising due to e-by-e fluctuation in the
number of emitters (strings).
The Short-Range (SR) contribution originating from the pair correlation
function A(n; ¢) of a single string.
Note that at A(n, ¢) = 0 we have Jeg = Jer = 0 and b,s\io =0, but

)

A0 — pRy = _ENHOOF

rel =0 = T wgigdr
M.A.Braun, R.S.Kolevatov, C.Pajares, V.V., Eur.Phys.J.C32, 535 (2004).
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The model

FB correlation in the model - 3

Note that by (31) and (32) for windows of small acceptances in rapidity
and azimuth, when §1 < ncor and d¢ < Peor (Where 1cor and ¢eor are the
characteristic correlation lengthes, defined by the behavior of the pair
correlation function A(7, ¢) (39) of a single string), we have

JFB(nsepa (bsep) ~ /\(nsepy ¢sep) s (36)
Jrr =~ N0, 0) (37)

and the formula (30) takes the simple form

N [(.L)N + /\(nsepa ¢56P)]M05F (38)

br ~ 9
14 fww + A0, 0)] 005

which enables to fit the model parameters by experimental observation of
the FB correlations between two small windows, varying the separation
between these windows in azimuth and rapidity .
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The model
The pair correlation function of a single string

The parametrization for the pair correlation function A(7, ¢) of a single
string (basing on the Schwinger mechanism of a string decay,
V.V. arXiv:1210.7588):

_lnl —d’—z _ ln=mql _ ln+mg _(d’*;)Q
ANn,¢)=NMNe me “1 +Ny (e ™ +e m Je “2 . (39

This formula has the nearside peak, characterizing by parameters A1, 71

and ¢1, and the awayside ridge-like structure, characterizing by parameters
N2, m2, Mo and @2 (two wide overlapping hills shifted by 4 in rapidity, 7o -
the mean length of a string decay segment). We imply that in formula (39)

lp| <. (40)

If |¢| > m, then we use the replacement ¢ — ¢ + 27k, so that (40) was
fulfilled. With such completions the A(n, ¢) meets the following properties

/\(_777 ¢) = /\(777 ¢) ) /\(771 _¢) = /\(T]? ¢) ’ /\(na ¢+ 27Tk) = /\(77»(@5))
41
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The model
Calculation of the integrals

The integrals (31) and (32) in the case of symmetric arbitrary windows
dng = dng = 6n and d¢p = d¢p = d¢ reduce to

on )
IrB(Nseps Psep) = (5775¢)_2 /6 dn do /\(77+775ep, ¢+¢sep) t5n(77) t6¢(¢) )
—on

(42)
o )
Jer = Irg(0,0) = (6ndg) 2 / "dn / do N(n, ¢) tan(n) tsp(P) =

4(Sn6)~ / di / doNT;®) (Fn—n) (56— 0) . (43)

where ts5,(y) is a "triangular"weight function arising at integration due to
phase:

tsy(v) = [0(=y)(dy +y) + 0(y)(dy — y)]6(0y — Iyl) - (44)
Then the n—¢ factorization for near and away side contributions in the fit
(39) for A(7; ¢) enables to reduce the (42) and (43) to single integrals.
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Fitting of the model parameters

Fitting of model parameters by FBC in small windows - 1

dn=0.2, d¢=1v4 windows

4n=0.2, d@=1v4 windows

correlation coefficient - b,

correlation coefficient - b,

pp 0.9 TeVv

0 1 1 1 1 1 1

0.1

0.08

0.06

0.04 .

0.02

pp 0.9 TeVv

0 02 04 06 08 1 12 1
distance between windows - ngg,
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Fitting of the model parameters

Fitting of model parameters by FBC in small windows - 2

dn=0.2, d¢=1v4 windows 4n=0.2, d@=1v4 windows

correlation coefficient - b,
correlation coefficient - b,

0.04 b 0.04 1 i
0.02 b 0.02 i
pp 7 TeVv pp 7 TeV
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
0 02 04 06 08 1 12 14 0 02 04 06 08 1 12 14

distance between windows - ngg, distance between windows - ngg,
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Fitting of the model parameters

Fitting of model parameters by FBC in small windows - 3

Results of the fitting of the model parameters by FB correlations between
two small windows, separated in azimuth and rapidity:
[ Vs Tev [09 70|
| LRC [ pown [ 0.7 | 2.1 |
,UOAI 15 2.3
m | 0.75 | 0.75
o | 12 | 11
¢ | 17 | 17
m | 0.9 | 0.9
_ (V)= (N)? ; ;
WN = gy i the e-by-e scaled variance of the number of strings,
to is the average rapidity density of the charged particles from one string,
i=1 corresponds to the nearside and /=2 to the awayside contributions,
7o is the mean length of a string decay segment.
. Altsybeev, PhD Thesis, SPbSU, 2013.
G.Feofilov et al. (for ALICE Collaboration), PoS (Baldin ISHEPP XXI) 075, 2012.
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Comparison with experiment

Comparison of FBC in large 27 windows with SM - 1

2mazimuth windows

2mazimuth windows

. I . T T T T T
SM 3n=0.2 i
SMén=0.4 - i
SM 4n=0.6 - i
06 [ SM 8n=08 i
B n=0.2
o : on=0.4
3n=0.6 +-O - .
05 [ 3n=0.8 &~ 05 Frree e o |
Tl g
04 |

correlation coefficient - b,

correlation coefficient - b,

0.3

0.2 - B
0.1 0.1 - B
pp 0.9 TeVv pp 7 TeV
0 1 1 1 1 1 1 1 O 1 1 1 1 1 1 1
0 02 04 06 08 1 12 14 0 02 04 06 08 1 12 14

gap between windows - ng,,

gap between windows - Ny,
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Comparison with experiment

Comparison of FBC in large 2w windows with SM - 2
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Comparison with experiment

Comparison of FBC in large 27 windows with SM - 3

correlation coefficient - by,
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Conclusion

Conclusions

e The observation of multiplicity-multiplicity correlation with two small
(in azimuth and rapidity) windows, enables to measure the
two-particle correlation function G, in accordance with the standard
definition [see (4) and (8)] even in the case of nonhomogeneous
distributions without using the event mixing procedure.

e The model with strings as independent identical emitters well
describes the FB multiplicity correlation in large 27 windows, when its
parameters are fitted by the correlation in small windows.

e The relative contribution of the Long-Range Correlation (LRC),
originating from e-by-e fluctuation in the number of emitters (strings),
considerably increases with the energy growth from 0.9 to 7 TeV
in comparison with the contribution of the Short-Range Correlations
(SRCQ), originating from the pair correlation function of a single string,
which remains practically the same.

e The scaled variance wy of the e-by-e fluctuations in number of
emitting sources increases three times from 0.9 to 7 TeV.
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Backup - 1

Backup slides - 1

1-4 October 2013 (St.-Petersburg) Il RSC V. Vechernin 24 / 32



Fitting the model parameters at 2.76 TeV

At present we have not the experimental value of FB correlation coefficient
brer with small windows (61 = 0.2, ¢ = 7 /4) at the 2.76 TeV energy for
fitting of the model parameters at this energy. So for a rude evaluation we
take the mean value of the parameters at 0.9 and 7 TeV:

| V5. Tev [ 09 [276] 7.0 |
| LRC | pown | 0.7 | 1.4 [ 2.1 |
whi | 15 [ 19 [ 23

m | 075|075 | 0.75
o) 1.2 | 1.15] 1.1
m | 20 | 20 | 2.0
¢ | 17 | 1.7 | 1.7
mo | 09 ] 09 [ 09

Then with these parameters we have:
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Backup - 1

Comparison of FBC in large 27 windows with SM

2mazimuth windows

21 azimuth windows, ngap:O

0.7 T T T T T T 0.7 T T T T
SM 51=0.2
SM 8n=0.4 -
SM 8n=0.6 -
SM 5n=0.8
08 06
n=0.4
n=0.6
n=0.8 :

correlation coefficient - b,

correlation coefficient - b,

0.5

0.4

0.3

0.2 0.2
0.1 | 0.1 SM
pp 2.76 TeV 0.9 TeV -
2.76 TeV
7TeV --G--
0 1 1 1 1 1 1 1 O 1 1 1 1
0 02 04 06 038 1 12 14 0.2 0.4 0.6 0.8

gap between windows - ng,,
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Backup slides - 2

Backup slides - 2
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Backup - 2
Connection between two-particle and di-hadron correlationsl

The di-hadron correlation function
C(Ay,Ap)=S/B—1 (45)

takes into account all possible pair combinations of particles produced in
given event in some ONE LARGE pseudorapidity window Ay € (=Y, Y),
where
_ d?N
 dAydA¢
and the B is the same but in the case of uncorrelated particle production.
Experimentalists obtain the B by the event mixing procedure.
We can express the enumerator of (45) through the two-particle correlation
function:

(46)

Y /2
S(Ay,A¢) = / , dyrdy2 pa(y1, y2; Ag)(y1 — y2 — Ay) (47)

-Y/
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Backup - 2
Connection between two-particle and di-hadron correlations?2

In the central rapidity region, when the translation invariance takes place
within the whole rapidity interval (—Y/2, Y/2), we have

P21, y2; AP) = po(y1 — y2; AP)
and one can fulfill the integration in (47):

5(Ay, A¢) = pa(Ay; Ag) ty(Ay) (48)
where the ty(Ay) is a "triangular"weight function
tsg(y) = [0(=y)(on + y) + 6(y)(on — )] 0(6n — |y]) - (49)

Puc.: The "triangular"weight function arising due to phase space .
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Backup - 2
Connection between two-particle and di-hadron correlations3

In the denominator of (45) we should replace the p,(y1, y2; A¢) by the
product p;(y1)p1(y2), which due to the translation invariance in rapidity
reduces simply to p3. Then

B(Ay,A¢) = p§ t(Ay) . (50)
Substituting into (45) we get

Ay; Ag)
2

C(ay.ng) = 2 1= G(Ay. ) | (51)

Po

We see that if the translation invariance in rapidity takes place within the
whole interval (=Y /2, Y/2), then the definition (45) for the di-hadron
correlation function C leads to the standard two-particle correlation
function G, (4) (see meanwhile the remark below).
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Backup - 2
Comments on the event mixing - 1

In the framework of the model with strings as independent identical
emitters we have for the enumerator and the denominator of (45):

S(Ay, M) = py(Dy; Ad) t(Ay) == (p5 (Ay; Ag)) tAy) = (52)
= [(M)A(Ay, Ag) + (N?)] g tv(Ay) |

Y /2
B(Ay,A¢) = /_Y/2 dyrdys p1(y1)p1(v2) (y1 — yo — Ay) =
Y /2
- /Y/2 dyrdys (pN () (N (v2)) (y1 — yo — Ay) =
= 05 t(By) = (N)*4 t(Dy) | (53)

we have noted that A;(y) = pg. Then by C =S/B — 1 we get

WN + A(Aya A¢)
(N)
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Backup - 2
Comments on the event mixing - 2

But if instead of (53) one has

Y/2

B(Ay,A¢) = / , dyrdyz (pY (y1)pr (2)) S(y1—y2—Dy) = (N?)ud ty(Ay)

as it sometimes takes place in a di-hadron data analysis (or if some other
artificial normalization conditions for the B(Ay, A¢) are being used), then
instead of (54) by C =S/B — 1 we get

C(8y. 80) = {2 NBy. 80). (55)
which does not correspond to the standard two-particle correlation function
G (Ay, Ag), defined by (4). Compare (55) with (54) we see that in this
case the resulting C(Ay, A¢) does not have an additional contribution
reflecting the event-by-event fluctuation in the number of emitters. It
depends only on the pair correlation function of a single string A(Ay, Ag)
and, therefore, is equal to zero in the absence of the pair correlation from

one string.
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