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Nonequilibrium phase transition in spreading processes

Spreading processes in physical, chemical, biological, ecological and sociological
systems: autocatalytic reactions, percolation in porous media, forest fires,
epidemic diseases, and so on.

Typical model: Random walk of two species on a lattice plus reaction:

Infection: A + B → B + B

Healing: B → A

Absorbing state: No infected individuals, ρB ≡ 0.
Fluctuating state: ρB = ρ(t, x) is a random quantity; 〈ρ(t, x)〉 6= 0.

Continuous (second-order) phase transition between these nonequilibrium
steady states.

Goals of the work: revealing universal scaling behaviour, calculation of critical
exponents, investigation of new universality classes.

Reference: Hinrichsen H 2000 Adv. Phys. 49 815



The stochastic model

In the continious formulation the spreading of some agent is
described by the following stochastic PDE:

∂tψ(t, x) = λ0

{
(−τ0 + ∂2)ψ(t, x)− g0ψ

2(t, x)/2
}

+
√
ψ(t, x)ζ(t, x), (1)

(Directed bond percolation process = simple epidemic process with
recovery = Gribov’s process = stochastic first Schlögl reaction)

ψ(t, x) > 0 — the agent density;
∂2 — Laplace operator;
λ0 and g0 — positive parameters;
τ0 ∝ (p − pc ) — deviation of the probability of the infection process
from the critical value (similarly to τ0 ∝ (T − Tc) in equilibrium
phase transitions)
d — the dimension of the x space
ζ(t, x) — Gaussian noise with correlation function

〈ζ(t, x)ζ(t ′, x′)〉 = g0λ0 δ(t − t ′)δ(d)(x − x′). (2)



Field theoretic formulation

Stochastic problem (1), (2) is equivalent to the “Reggeon field theory” with the
action functional

S(ψ,ψ†) = ψ†(−∂t + λ0∂
2 − λ0τ0)ψ +

g0λ0

2

(
(ψ†)2ψ − ψ†ψ2

)
, (3)

the integrations are implied:

ψ†∂tψ =

∫
dt

∫
dxψ†(t, x)∂tψ(t, x).

ψ†(x) = ψ†(t, x) is the auxiliary “response field”.

Correlation functions of the stochastic problem = functional averages with
weight expS .

The linear response function of the problem (1), (2) is given by the Green
function

G = 〈δψ(x)/δζ(x ′)〉 = 〈ψ†(x)ψ(x ′)〉 =

∫
Dψ†

∫
Dψ ψ†(x)ψ(x ′) expS(ψ,ψ†).



Phase transition

Ordinary differential equation

∂tψ = −τ0ψ −
g0

2
ψ2

τ0 > 0 ⇒ ψ → 0

τ0 < 0 ⇒ ψ →
2 | τ0 |

g0

Our action has the following symmetry

ψ(t, x) → ψ†(−t,−x), ψ†(t, x) → ψ(−t,−x), g0 → −g0.

Absorbing phase: 〈ψ . . . ψ〉 = 0, 〈ψ† . . . ψ†〉 = 0
Anomalous (fluctuating) phase: 〈ψ . . . ψ〉 6= 0
Phase transition = breakdown of the symmetry

ψ = ϕ+ C , C = 〈ψ〉

Reference: Janssen H-K and Täuber U C 2004 Ann. Phys. (NY) 315 147.



Turbulent mixing. Obukhov–Kraichnan’s model

Inclusion of the velocity field v = {vi (t, x)}, imitating some real properties of
turbulence:

∂t → ∇t = ∂t + vi∂i , ∂i = ∂/∂xi .

Incompressibility: ∂ivi = 0.

Gaussian distribution with zero average and the correlation function

〈vi (t, x)vj (t
′, x′)〉 = δ(t − t

′)Dij(r), r = x − x
′

Dij(r) = D0

∫

k>m

dk

(2π)d
Pij(k)

1

kd+ξ
exp(ikr), k ≡ |k|; (4)

Pij (k) = δij − kikj/k
2 — transverse projector;

D0 > 0 — positive parameter;
0 < ξ < 2 — Hölder exponent, the “Kolmogorov” value ξ = 4/3;

the IR cutoff at k = m ≡ 1/L, where L — the integral turbulence scale.



Field theoretic formulation (with velocity field)

Field theoretic model of three fields Φ = {ψ,ψ†, v}

S(Φ) = ψ†(−∇t + λ0∂
2 − λ0τ0)ψ +

λ0g0

2

(
(ψ†)2ψ − ψ†ψ2

)
+ S(v), (5)

S(v) = −
1

2

∫
dt

∫
dx

∫
dx′ vi (t, x)D

−1
ij (r)vj (t, x

′), (6)

where D−1(r) ∝ D−1
0 r−2d−ξ — the kernel of the inverse linear

operation for the function Dij(r) in (4).



Feynman rules

The bare propagators (lines) — 〈vivj〉0 from (4) and G0 = 〈ψψ†〉0:

G0(t, k) = θ(t) exp
{
−λ0(k

2 + τ0)
}
↔

G0(ω, k) =
1

−iω + λ0 (k2 + τ0)
(7)

The vertices:

∼ (ψ†)2ψ, ψ†ψ2, −ψ†(v∂)ψ (8)

The coupling constants:

u0 = g2
0 , w0 = D0/λ0. (9)



Canonical dimensions

The canonical dimension of the variable F

dF = dk
F + 2dωF

The coupling constants

u0 = g2
0 ∼ Λ4−d , w0 = D0/λ0 ∼ Λξ, (10)

where Λ — typical UV momentum scale.

The model is logarithmic (the both coupling constants g0 and w0

are simultaneously dimensionless) at d = 4 and ξ = 0.

The UV divergences = singularities at ε = (4 − d) → 0, ξ → 0.



Dimensional analysis

Dimensional analysis (“power counting”): superficial UV divergences
can be present in the 1-irreducible functions
〈ψ†ψ〉 with the counterterms ψ†∂tψ, ψ

†∂2ψ, ψ†ψ,
〈ψ†ψψ〉 with the counterterm ψ†ψ2,
〈ψ†ψ†ψ〉 with the counterterm (ψ†)2ψ,
〈ψ†ψv〉 with the counterterm ψ†(v∂)ψ

Galilean symmetry: divergence in the function
〈ψ†ψvv〉 with the counterterm ψ†ψv2 is forbidden.

The counterterms ψ†∂tψ and ψ†(v∂)ψ appear in the combination
ψ†∇tψ.

Symmetry ψ† ↔ ψ: trilinear counterterms enter as the combination
(ψ†)2ψ − ψ†ψ2.



The renormalized action

All these terms are present in the action (5), so the model is
multiplicatively renormalizable.

The renormalized action:

SR(Φ) = ψ†
(
−Z1∇t + Z2λ∂

2 − Z3λτ
)
ψ +

+ Z4
λg

2

(
(ψ†)2ψ − ψ†ψ2

)
+ SR(v). (11)

λ, τ , g , w — renormalized analogues of the bare parameters,

µ — the reference mass in the MS scheme,

SR(v) — S(v) expressed in the terms of renormalized variables. It is
not renormalized, because there are not counterterms including only
the velocity field:

D0 = w0λ0 = wλµξ. (12)



Renormalization of the fields and the parameters

The expression (11) is equivalent to the multiplicative
renormalization of the fields and the parameters:

ψ → ψZψ, ψ† → ψ†Zψ† , v → vZv ,

λ0 = λZλ, τ0 = τZτ , g0 = gµε/2Zg , w0 = wµξZw . (13)

The constants in (11) and (13) are related as follows:

Z1 = ZψZψ† = ZvZψZψ† Z2 = ZψZψ†Zλ, Z3 = ZψZψ†ZλZτ ,

Z4 = ZψZ 2
ψ†ZgZλ = Z 2

ψZψ†ZgZλ. (14)

Due to the symmetry: Zψ = Zψ† .

The velocity field is not renormalised: Zv = 1.

SR(v) is not renormalized: ZD = 1 = ZwZλ



Calculation of constants Z

The one-loop approximation of the relevant 1-irreducible Green
functions.



The one-loop results for Z

The constants Z1–Z4 are calculated directly from the diagrams,
then the constants in (13) are found from (14).

The one-loop results:

Z1 = 1 +
u

4ε
, Z2 = 1 +

u

8ε
−

3w

4ξ
,

Z3 = 1 +
u

2ε
, Z4 = 1 +

u

ε
, (15)

where we passed to the new couplings,

u → u/16π2, w → w/16π2. (16)



RG equation

The action functionals are related as

SR(Φ, e, µ) = S(Φ, e0)

so that the Green functions are related as

G(e0, . . . ) = Z
Nψ
ψ Z

N
ψ†

ψ† GR(e, µ, . . . ). (17)

Here: Nψ and Nψ† — the numbers of corresponding fields
e0 = {λ0, τ0, u0,w0} — the full set of bare parameters
e = {λ, τ, u,w} — their renormalized counterparts.

Let D̃µ be the differential operation µ∂µ for fixed e0; act on both sides of the
equation (17) with it. This gives the basic RG equation:

{
DRG + Nψγψ + Nψ†γψ†

}
GR(e, µ, . . . ) = 0, (18)

where DRG is the operation D̃µ expressed in the renormalized variables:

DRG ≡ Dµ + βu∂u + βw∂w − γλDλ − γτDτ . (19)

Here Dx ≡ x∂x for any variable x



The anomalous dimensions and the β-funtions

The anomalous dimension γ for any variable F is defined as

γF ≡ D̃µ ln ZF for any quantity F , (20)

The β functions for the couplings u and w are

βu ≡ D̃µu = u [−ε− γu], βw ≡ D̃µw = w [−ξ − γw ]. (21)

One-loop results:

γψ = γψ† = −
u

8
, γλ = −γw =

u

8
+

3w

4
,

γτ = −
3u

8
−

3w

4
, γu = −

3u

2
−

3w

2
, (22)

with corrections of order u2, w2, uw and higher.



Fixed points and IR scaling regimes

Long-time large-distance asymptotic behaviour is determined by the
IR attractive fixed points of the RG equations:

βu(u∗,w∗) = 0, βw (u∗,w∗) = 0. (23)

The fixed point is IR attractive if the matrix

Ω = {Ωij = ∂βi/∂gj}, (24)

is positive (eigenvalues have positive real parts).

The one-loop expressions:

βu = u (−ε+ 3u/2 + 3w/2), βw = w (−ξ + u/8 + 3w/4). (25)



Fixed points

There are four different fixed points.
1. Gaussian (free) fixed point:

u∗ = w∗ = 0; λ1 = −ε, λ2 = −ξ
(all these expressions are exact).

2. w∗ = 0 (exact result to all orders), u∗ = 2ε/3;
λ1 = ε, λ2 = −ξ + ε/12.
Effects of turbulent mixing are irrelevant; the basic critical
exponents are independent on ξ and coincide to all orders with their
counterparts for the “pure” DP class.

3. u∗ = 0, w∗ = 4ξ/3 (exact); λ1 = −ε+ 2ξ, λ2 = ξ (exact).
The nonlinearity (ψ†)2ψ − ψ†ψ2 of the DP model is irrelevant, and
we arrive at the rapid-change model of a passively advected scalar
field ψ. For that model, the β function is given exactly by the
one-loop approximation, hence the exact results for w∗ and λ2.



Fixed points

4. u∗ = 4(ε− 2ξ)/5, w∗ = 2(12ξ − ε)/15. The eigenvalues:

λ± =
1

20

(
11ε− 12ξ ±

√
161ε2 − 824εξ + 1104ξ2

)
(26)

are both real for all ε and ξ and positive for ε/12 < ξ < ε/2.

This fixed point corresponds to a new nontrivial IR scaling regime
(universality class), in which the nonlinearity of the DP model (3)
and the turbulent mixing are simultaneously important; the
corresponding critical exponents depend on the both RG expansion
parameters ε and ξ and are calculated as double series in these
parameters.



Regions of stability of the fixed points in the model (5)6
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Scaling

The definition of the scaling for a function F = F (x1, . . . , xn):

F (λα1x1, . . . , λ
αnxn) = λαF F (x1, . . . , xn) ⇔

n∑

i=1

αiDi F (x1, . . . , xn) = αF F (x1, . . . , xn), Di = xi∂/∂xi ⇔

F (x1, x2, . . . , xn) = x
αF /α1

1 F̃

(
x2

x
α2/α1

1

, . . . ,
xn

x
αn/α1

1

)

{α1, . . . , αn, αF } – scaling dimensions.

The Green’s function GNΦ
has scaling form:

{D⊥ +∆ωDω +∆τDτ − NΦ∆Φ}GNΦ
= 0.

Four fixed points of the model (3) correspond to four possible IR
scaling (self-similar) regimes; for given ε and ξ only one of them is
IR attractive and governs the IR behaviour.



Critical dimensions

For a given point, the critical dimensions ∆f of the IR relevant
quantities f are given by the relations

∆F = dk
F +∆ωdωF + γ∗F ,

∆ω = 2 − γ∗λ, γ∗f = γf (u∗,w∗)

From the explicit one-loop expressions (22) we find:

1. Gaussian (free) fixed point; all the expressions are exact:

∆ψ = d/2, ∆τ = ∆ω = 2. (27)

2. Directed percolation (DP) regime; mixing irrelevant:

∆ψ = 2 − 7ε/12, ∆τ = 2 − ε/4, ∆ω = 2 − ε/12. (28)

The conventional critical exponents are related to (28) as
z = ∆ω, 1/ν = ∆τ , d + η = 2∆ψ.
Critical exponents are known to ε2, the O(ε3) calculation is in
progress.



Critical dimensions

3. Obukhov–Kraichnan exactly soluble regime; all results exact:

∆ω = ∆τ = 2 − ξ, ∆ψ = d/2. (29)

4. New universality class (both mixing and DP interaction are
relevant):

∆ψ = 2 + (ξ − 3ε)/5, ∆τ = 2 − (ε+ 3ξ)/5,

∆ω = 2 − ξ (exact). (30)

The first two dimensions have nontrivial corrections in ε and ξ.



Spreading of a cloud

The mean-square radius R(t) at time t > 0 of a cloud of “infected”
particles, which started from the origin x′ = 0 at time t ′ = 0:

R2(t) =

∫
dx x2 G (t, x), G (t, x) = 〈ψ(t, x)ψ†(0,0)〉, x = |x|.(31)

Substituting the scaling form of the response function

G (t, x) = x−2∆ψ F
( x

t1/∆ω
,

τ

t∆τ/∆ω

)

gives

R2(t) = t(d+2−2∆ψ)/∆ω f
( τ

t∆τ/∆ω

)
, (32)

where the scaling functions f and F are related as follows:
f (z) =

∫
dx x2−2∆ψ F (x , z).



Spreading of a cloud

At the critical point (τ = 0) the power law holds:

R2(t) ∝ t(d+2−2∆ψ)/∆ω = t(2−2γ∗ψ)/(2−γ
∗
λ); (33)

1 The Gaussian fixed point: the usual “1/2 law” R(t) ∝ t1/2 for
the ordinary random walk is recovered.

2 The passive-scalar fixed point: the exact result
R(t) ∝ t1/(2−ξ).

For the most Kolmogorov value ξ = 4/3 this gives R(t) ∝ t3/2

in agreement with Richardson’s “4/3 law” dR2/dt ∝ R4/3.

3 For the other two fixed points the exponents in (32), (33) are
given by infinite series in ε (point 2) or ε and ξ (point 4).



Intermediate conclusions

Four critical regimes, associated with four fixed points of the RG
equations:

1 Gaussian fixed point (ordinary diffusion or random walk);

2 DP process, advection irrelevant;

3 Passively advected scalar field (infection processes irrelevant);
the real cases d = 2 or 3 and ξ = 4/3 belongs to this regime;

4 New nonequilibrium universality class, in which both the
reaction and the turbulent mixing are relevant; the critical
exponents are double series in ξ and ε = 4 − d .
Its region of IR stability ε/12 < ξ < ε/2 differs from naive
expectation ξ > 0 and ε > 0.



Modifications of the model

The most conventional “model A” for critical dynamics of a
non-conserved order parameter at equilibrium:

∂tψ(t, x) = −λ0
δH

δψ(t, x)
+ ζ(t, x)

with the Ginzburg–Landau–Wilson Hamiltonian

H(ψ) =

∫
dx

{
1

2
(∂ψ)2 +

1

2
τ0ψ

2 +
g0

4!
ψ4

}

and Gaussian noise with correlation function

〈ζ(t, x)ζ(t ′, x′)〉 = 2λ0 δ(t − t ′)δ(d)(x − x′).

Logarithmic at d = 4, and g0 ∝ Λε.



Strongly anisotropic turbulent mixing (turbulent shear flow)

Distinguished direction specified by unit vector n (“direction of the
flow”); any vector can be decomposed as

x = x⊥ + nx‖ with x⊥ · n = 0.

The velocity field

v = nv(t, x⊥) (34)

is automatically transverse:

∂ivi = ∂‖v(t, x⊥) = 0. (35)



Correlation function

Gaussian statistics with the correlator:

〈v(t, x⊥)v(t
′, x′⊥)〉 = δ(t − t ′)× (36)

×

∫
dk⊥

(2π)d−1
exp
{
ik⊥ · (x⊥ − x′⊥)

}
Dv (k⊥) (37)

with the scalar coefficient functions of the form

Dv (k⊥) =
D0

k
d−1+ξ
⊥

, k⊥ = |k⊥|. (38)

Logarithmic at ξ = 0.

Reference: Avellaneda M and Majda A 1990 Commun. Math. Phys.

131 381



Regions of stability of the fixed points in the model
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Figure 2. Regions of stability of the fixed points in various models.



Spreading of a cloud — Anisotropic case

For anisotropic mixing the coordinates x‖, x⊥ or momenta k‖, k⊥ have
different critical dimensions: ∆‖ 6= ∆⊥ = 1.
The response function at the critical point τ = 0 has the scaling form

〈ψ′(0, 0, 0)ψ(t, x‖, x⊥)〉 = x
−∆ψ−∆ψ′

⊥ F
(
x⊥t

−1/∆ω , x‖t
−∆‖/∆ω

)
. (39)

The mean-square displacement along the axis i at time t > 0 of an “infected”
particle:

R
2

i (t) =

∫
d

d−1
x⊥

∫
dx‖ x

2

i 〈ψ′(0, 0, 0)ψ(t, x‖, x⊥)〉. (40)

Substituting (39) into (40) gives

R
2

⊥(t) ∝ t
α⊥ , R

2

‖(t) ∝ t
α‖

with exponents

α⊥ =
(
d + 1 +∆‖ −∆ψ −∆ψ′

)
/∆ω,

α‖ =
(
d − 1 + 3∆‖ −∆ψ −∆ψ′

)
/∆ω.

For the passive scalar α⊥ = 1 and α‖ = 1 + ξ/2:

R
2

⊥(t) ∝ t, R
2

‖(t) ∝ t
1+ξ/2

For the Kolmogorov value ξ = 4/3 this gives dR2

‖/dt ∝ R
4/5
‖ which differs from

Richardson’s 4/3 law.



Further investigation (in progress)

1 compressibility, non-Gaussian character and finite

correlation time of the advecting velocity field;

2 effects of immunization (memory);

3 interaction of the order parameter with other

relevant degrees of freedom (mode-mode
coupling);

4 feedback of the reactants on the dynamics of the
velocity (forest fires, chemical reactions).



Thank you for your

attention!
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