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Introduction

We shall consider the Heisenberg XXZ chain in two specific limits
of the anysotropy parameter ∆. The ∆ → ∞ limit is called the
Izing limit, while ∆ → 0 is the XX (free fermion) limit. The
wave functions in the considered limits are expressed in terms of
the symmetric Schur functions. We shall calculate the thermal
correlators of the ferromagnetic string over the ground states in
both limits

T (θ, n, β) ≡
〈ΨN(θ) | Π̄n e−βĤ Π̄n |ΨN(θ)〉
〈ΨN(θ) | e−βĤ |ΨN(θ)〉

,

Π̄n = σ+
Mσ−M . . . σ+

n σ−n

and study its low-temperature (β → ∞) asymptotics when the
number of the lattice sites are much greater than the number
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of particles M � N . The amplitudes of these asymptotics are

related to the number of the boxed plane partitions (three di-

mensional Young diagrams) in a N ×N × (M −N − n) box.
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XXZ SPIN CHAIN

• •• Hamiltonian of the XXZ model defined on a chain of

“length” M+1 in absence of magnetic field has the form:

ĤXXZ = −
1

2

M∑
k=0

(σ−k+1σ+
k + σ+

k+1σ−k +
∆

2
(σz

k+1σz
k − 1)) ,

where ∆ ∈ R is internal anisotropy, and M+1 is even. The local

spin operators σa
n are defined as tensor products:

σa
n ≡ I⊗ I⊗ · · · ⊗ σa︸︷︷︸

nth

⊗ · · · ⊗ I ,

where σa, a = x, y, z, are the Pauli matrices at nth place, and

σ±n = 1
2(σ

x
n ± iσ

y
n).
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The algebra of the spin operators is given by the commutation

relations: [
σ+

k , σ−l
]

= δkl σ
z
l ,

[
σz

k, σ±l
]

= ±2 δkl σ
±
l .

The spin operators act over the state-space HM+1 given by the

tensor product: HM+1 =
M⊗

k=0
C2. The linear space C2 is spanned

over the spin “up” and “down” states (|↑〉 and |↓〉, respectively):

|↑〉 ≡
(

1
0

)
, |↓〉 ≡

(
0
1

)
.

The space HM+1 is spanned over of the state-vectors
M⊗

k=0
|s〉k ,

where s implies either ↑ or ↓. The periodic boundary conditions

σ#
k+(M+1) = σ#

k are imposed.
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• • • XX model

The Hamiltonian is given by the limit ∆ → 0 in the XXZ Hamil-

tonian:

ĤXX ≡ −
1

2

M∑
k=0

(σ−k+1σ+
k + σ+

k+1σ−k ) .

• • • Izing (Strong Anisotropy) limit ∆ → −∞

Less studied limit of the XXZ model is the Strong Anisotropy

(SA) limit ∆ → −∞. In this limit the system can be described

by the effective Hamiltonian ĤSA:

ĤSA = −
1

2

M∑
k=0

P(σ−k+1σ+
k + σ+

k+1σ−k )P ,

5



where the projectors P ≡
M∏

k=0

(1− q̂k+1q̂k) cut out the states with

the spin “down” states at any pair of nearest-neighboring sites.

The projectors onto the spin “up” and “down” states are:

q̌k ≡
1

2
(σ0

k + σz
k) , q̂k ≡

1

2
(σ0

k − σz
k) , k ∈M ,

Refs.: F. C. Alcaraz, R. Z. Bariev, An exactly solvable con-

strained XXZ chain, arXiv:cond-mat/9904042

N. I. Abarenkova, A. G. Pronko, The temperature correlator

in the absolutely anisotropic Heisenberg XXZ-magnet, Teoret.

Mat. Fiz., 131 (2002), 288–303.
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The N-particle state-vectors of the XXZ model are represented

in the form

|ΨN(u1, . . . , uN)〉 =
∑

{ek(µ)}k∈M

χXXZ
µ (u1, u2, . . . , uN)

M∏
k=0

(σ−k )ek |⇑〉 ,

The sites with spin “down” states are labeled by the coordinates

µi, 1 ≤ i ≤ N . These coordinates form a strict partition µ ≡
(µ1, µ2, . . . , µN), where M ≥ µ1 > µ2 > . . . > µN ≥ 0. There

is a correspondence between each partition and an appropriate

sequence of zeros and unities of the form:
{
ek ≡ ek(µ)

}
k∈M

,

where ek ≡ δk,µn, 1 ≤ n ≤ N . The condition
M∑

k=0
ek = N is

satisfied.
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|ΨN(u1, . . . , uN)〉 =
∑

{ek(µ)}k∈M

χXXZ
µ (u1, u2, . . . , uN)

M∏
k=0

(σ−k )ek |⇑〉 ,

The wave function is:

χXXZ
µ (u1, u2, . . . , uN) =

∑
Sp1,p2,...,pN

AS(u1, u2, . . . , uN)u
2µ1
p1 u

2µ2
p2 . . . u

2µN
pN ,

where summation goes over all elements of the group of permu-

tations Sp1,p2,...,pN ≡ S

(
1, 2, . . . , N
p1, p2, . . . , pN

)
. The amplitude:

AS(u1, u2, . . . , uN) ≡
∏

1≤j<i≤N

1− 2∆u2
pi

+ u2
pi

u2
pj

u2
pi
− u2

pj

.
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The state-vectors are the eigen-states of the XXZ Hamiltonian
with corresponding eigen-values,

ĤXXZ |ΨN(u1, . . . , uN)〉 = EN |ΨN(u1, . . . , uN)〉 ,
if and only if, the parameters ul (1 ≤ l ≤ N) satisfy the Bethe
equations:

u
2(M+1)
l = (−1)N−1

N∏
k=1

1− 2∆u2
l + u2

l u2
k

1− 2∆u2
k + u2

l u2
k

.

The corresponding eigen-energies are given by

EN ≡ EN(u1, . . . , uN) = −
1

2

N∑
i=1

(u2
i + u−2

i − 2∆) .
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Up to irrelevant pre-factor, the wave function at ∆ = 0 is equal

to

χXX
µ (u1, u2, . . . , uN) = det(u

2µk
j )1≤j,k≤N

∏
1≤n<l≤N

(u2
l − u2

n)
−1,

and the Bethe equation with its solution are of the form:

u
2(M+1)
j = (−1)N−1 , u2

j = e
i 2π
M+1Ij , 1 ≤ j ≤ N ,

where Ij are integers or half-integers depending on whether N is

odd or even: M ≥ I1 > I2 > · · · > IN ≥ 0. The eigen-energy is of

the form:

EXX
N (I1, I2, . . . , IN) = −

N∑
l=1

cos
(

2πIl

M + 1

)
.
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The wave function in the Izing limit ∆ → −∞ takes the form
(up to a pre-factor):

χSA
µ (u1, u2, . . . , uN) = det(u

2(µk−N+k)
j )1≤j,k≤N

∏
1≤n<l≤N

(u2
l − u2

n)
−1 ,

where the spin “down” states form strict decreasing partition µ,
i.e., M ≥ µ1 > µ2 > . . . > µN ≥ 0. The wave function is not
equal to zero if and only if the elements µi, 1 ≤ i ≤ N , satisfy
the exclusion condition: µi > µi+1+1. The Bethe equation with
its solution are specialized as follows:

u
2(M+1−N)
k = (−1)N−1

N∏
j=1

u−2
j , u2

k = e
i
2πIk−P
M+1−N , 1 ≤ k ≤ N.

where Ij are integers or half-integers depending on N being odd

or even, whereas P ≡ 2π
M+1

N∑
j=1

Ij.
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The eigen-energy has the form:

ESA
N (I1, I2, . . . , IN) = −

N∑
l=1

cos
(

2πIk − P

M + 1−N

)
,

where M −N ≥ I1 > I2 > · · · > IN ≥ 0.
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• • • The wave functions of the model in the considered

limits may be expressed through the Schur functions:

Sλ(x1, x2, . . . , xN) ≡
det(x

λk+N−k
j )1≤j,k≤N

det(xN−k
j )1≤j,k≤N

= det(x
λk+N−k
j )1≤j,k≤N

∏
1≤n<l≤N

(xl − xn)
−1,

where λ is (λ1, λ2, . . . , λN) being N-tuple of non-increasing non-

negative integers: L ≥ λ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0.

Any strict partition M ≥ µ1 > µ2 > . . . > µN ≥ 0 and non-strict

partition M + 1−N ≥ λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0 (denoted as µ and

λ, respectively) are connected by the equation λj = µj −N + j,
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where j = 1, . . . , N . In other terms, λ = µ − δ, where δ is the

strict partition (N − 1, N − 2, . . . ,1,0).

So the wave function of the XX model may be represented as

χXX
µ (u1, u2, . . . , uN) = Sλ(u2

1, . . . , u2
N) .

Any strict decreasing partition µ respecting the exclusion con-

dition µi > µi+1 + 1 is related to the non-strict partition λ̃:

λ̃ = µ − 2δ, where M + 2(1 − N) ≥ λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃N ≥ 0.

Therefore, we obtain:

χSA
µ (u1, u2, . . . , uN) = S

λ̃
(u2

1, . . . , u2
N) .
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The scalar products of the state-vectors in the both considered

limits, and the certain expectation values we will calculate with

the help of the Binet–Cauchy formula:

∑
λ⊆{LN}

Sλ(x2
1, . . . , x2

N)Sλ(y2
1, . . . , y2

N)

= det(Tjk)1≤j,k≤N

∏
1≤k<j≤N

(
y2
j − y2

k

)−1 ∏
1≤m<l≤N

(
x2

l − x2
m

)−1
,

where summation goes over all non-strict partitions λ:

L ≥ λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0. The entries Tjk take the form:

Tjk =
1− (xkyj)

2(N+L)

1− (xkyj)2
.
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CORRELATION FUNCTIONS

• • • We shall demonstrate the discussed approach to the
calculation of correlation functions on the example of the survival
probability of ferromagnetic string:

T (θ, n, β) ≡
〈ΨN(θ) | Π̄n e−βĤ Π̄n |ΨN(θ)〉
〈ΨN(θ) | e−βĤ |ΨN(θ)〉

,

where q̌j ≡
σ0

j +σz
j

2 , the projector Π̄n ≡
M∏

j=M−n
q̌j cuts out the

states with spins down on the last n + 1 sites of the lattice,
β ∈ C, Ĥ implies either ĤXX or ĤSA, θ is the solution of the
correspondent Bethe equations, and |ΨN(θ)〉 is an eigenstate.
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• • • XX model

Using the following expressions for the state-vector and its con-

jugated:

|ΨN(u)〉 =
∑

λ⊆{(M+1−N)N}
Sλ(u2)

M∏
k=0

(σ−k )ek |⇑〉 ,

〈ΨN(v) |=
∑

λ⊆{(M+1−N)N}
〈⇑|

M∏
k=0

(σ+
k )ẽk Sλ(v−2) .

it is easy to calculate the action of the projector:

Π̄n |ΨN(u)〉 =
∑

λ⊆{(M−N−n)N}
Sλ(u2)

(M−n−1∏
k=0

(σ−k )ek

)
|⇑〉 .
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Applying the Binet-Cauchy formula we obtain the following ex-

pression for the matrix element:

〈ΨN(v) | Π̄n |ΨN(u)〉 =
∑

λ⊆{(M−N−n)N}
Sλ(v−2)Sλ(u2)

=
1

V(u2)V(v−2)
det

1− (u2
k/v2

j )
(M−n)

1− u2
k/v2

j


1≤j,k≤N

.

where

V(u2) ≡
∏

1≤m<l≤N

(u2
l − u2

m)

is the Vandermonde determinant. For n = −1 this expression

gives the answer for the scalar product of the state-vectors.
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The eigenstates of the XX chain form the complete and orthog-

onal set. It allows to calculate the survival probability:

T (θ, n, β) =
eβEXX

N (θ)

(M + 1)N

∑
M≥k1>k2···>kN≥0

e
β

N∑
l=1

cos(φkl
)
|V(eiφ)P(e−iφ, eiθ)|2 ,

where

P(e−iφ, eiθ) ≡
∑

λ⊆{(M−N−n)N}
Sλ(e−iφ)Sλ(eiθ) ,

and φs = 2π
M+1s. We may bring this expression into a more

compact form
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T (θ, n, β) =
eβEXX

N (θ)

(M + 1)N |V(eiθ)|2

×
∑

M≥k1>k2···>kN≥0

e
β

N∑
l=1

cos(φkl
)∣∣∣det

(
1− (e

iθp−iφkl)M−n

1− e
iθp−iφkl

)∣∣∣2
1≤p,l≤N

We may bring this expression into determinantal form:

T (θ, n, β) =
eβEXX

N (θ)

(M + 1)N
×

× det
1≤i,j≤N

(M−n∑
k,l=0

Fk; l(β) e−β cos(θi)+ i(lθi−kθj)
)

,
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where

Fk; l(β) ≡
1

M + 1

M∑
s=0

eβ cosφs eiφs(k−l)

is a generating function of the number of walks with random

turns made by a single pedestrian travelling between lth and kth

sites of (periodic) chain.
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• • • Izing limit

The answer for the survival probability is similar to that of the

XX model:

T (θ, n, β) =
eβESA

N (θ)

(M + 1)(M + 1−N)N−1|V(eiθ)|2

×
∑

M−N≥k1>k2···>kN≥0

e
β

N∑
l=1

cos(φkl
)∣∣∣det

(
1− (e

iθp−iφkl)M−N−n+1

1− e
iθp−iφkl

)∣∣∣2
1≤p,l≤N

,

where φs =
2π

M + 1−N

(
s−

M −N

2

)
.
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When β = 0 the function T (θ, n, β) is known as the emptiness

formation probability and is equal to

T (θ, n) =
M −N + 1

M + 1
× det

((
1−

n

M −N + 1

)
δjk +

+
1− ein(θj−θk)

(M −N + 1)(1− ei(θk−θj))
(1− δjk)

)
1≤k,j≤N

.
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FOUR-VERTEX MODEL AND BOXED PLANE
PARTITIONS

A six-vertex model on a square grid is defined by the six different
arrows (lines) arrangements. A statistical weight corresponds to
each type of the vertices:

The L-operator of the six-vertex model is equal to:

L6v(n|u) =

 −ueγσz
n − u−1e−γσz

n σ−n
(
e2γ − e−2γ

)
σ+

n

(
e2γ − e−2γ

)
ue−γσz

n + u−1eγσz
n

 .
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The transfer matrix of the model

τ6v(u) = TrL6v(M |u) . . . L6v(1|u)L6v(0|u)

commute with Hamiltonian of the XXZ model

[ĤXXZ, τ6v(u)] = 0, ∆ = − cosh2γ.

The L-operator of the four-vertex model

is obtained as the following limit of the six-vertex L-operator:
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L4v(n|u) = lim
γ→∞ e−2γeγσz

ne
γ
2σz

L6v(n|u)e−
γ
2σz

,

and is equal to

L4v(n|u) =

(
−uσ+

n σ−n σ−n
σ+

n u−1σ+
n σ−n

)
.

The transfer matrix of the four-vertex model commute with the

Hamiltonian in the Izing limit:

[ĤSA, τ4v(u)] = 0.
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The scalar product the state vectors in the Izing limit may be ex-

pressed as the sum over all allowed configurations of vertices on

a square lattice with the arrows on first N vertical rows pointing

inwards, on the last N ones pointing outwards; on the right and

on the left boundaries all arrows are pointing to the left.
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Putting vj = q−
j
2 and uj = q

j−1
2 in the scalar product of the state

vectors in the Izing limit we obtain

〈ΨN(q−
1
2, . . . , q−

N
2 ) |ΨN(1, . . . , q

N−1
2 )〉 =

=
∑

λ̃⊆{(M+2−2N)N}
S

λ̃
(q, . . . , qN)S

λ̃
(1, . . . , qN−1) =

= q−
N
6 (N−1)(2N−1) ∏

1≤k<j≤N

(
1− qj−k

)−2
det

(
1− sj+k−1

1− qj+k−1

)
1≤j,k≤N

,

where s = qM−N+2. The determinant was calculated by G. Ku-
perberg :

det
(
1− sj+k−1

1− qj+k−1

)
1≤j,k≤N

=

= q
N
6 (N−1)(2N−1) ∏

1≤k<j≤N

(
1− qj−k

)2 N∏
k,j=1

1− sqj−k

1− qj+k−1
,
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And we obtain Zspp(q):

〈ΨN(q−
1
2, . . . , q−

N
2 ) |ΨN(1, . . . , q

N−1
2 )〉 = Zspp(q) ,

where Zspp(q) is the generating functions of the strict plane par-

titions in a box N ×N ×M :

Zspp(q) =
∏

1≤j,k≤N

1− qM+3−j−k

1− qj+k−1
.

For q = 1 this formula gives the number of strict plane partitions

in a box N ×N ×M :

Zspp(1) =
∏

1≤j,k≤N

M + 3− j − k

j + k − 1
.
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Calculating the scalar product of the state vectors in the XX
case with the same parametrization we obtain Zspp(q):

〈ΨN(q−
1
2, . . . , q−

N
2 ) |ΨN(1, . . . , q

N−1
2 )〉 = Zcspp(q) ,

where Zspp(q) is the generating functions of the column strict
plane partitions in a box N ×N ×M :

Zcspp(q) =
∏

1≤j,k≤N

1− qM+1+j−k

1− qj+k−1
.

The number of column strict plane partitions in a box N×N×M
is equal to

Zcspp(1) =
∏

1≤j,k≤N

M + 1 + j − k

j + k − 1
.
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LOW TEMPERATURE LIMIT

Let us consider the correlation function

T (θ, n, β) ≡
〈ΨN(θ) | Π̄n e−βĤXX Π̄n |ΨN(θ)〉

〈ΨN(θ) | e−βĤ |ΨN(θ)〉
,

over the ground state. In this case θj = 2π
M+1

(
N−j−N−1

2

)
, 1 ≤

j ≤ N . For a long enough chain when M � 1, while the number
N is moderate 1 � N � M , we may put u2 ' 1 and obtain

T (θ, n, β) = e−βN(M + 1)−N

×
∑

M≥k1>k2···>kN≥0

e
β

N∑
l=1

cos(φkl
)
|V(eiφ)P(e−iφ,1)|2 ,
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where

P(e−iφ,1) ≡
∑

λ⊆{(M−N−n)N}
Sλ(e−iφ)Sλ(1) .

In the considered limit we can replace sums by the integrals and

obtain:

T (θ, n, β)

'
eβN

N !

N∏
i=1

(∫ 2π

0

dφi

2π

)
e
−β

N∑
l=1

(1−cosφl)
|P(e−iφ,1)|2

∏
1≤k<l≤N

|eiφk − eiφl |2 .

When β is tending to the infinity this integral can be approxi-

mated in the following way:

32



T (θ, n, β) ' P2(1,1)
1

N !

×
∫ 2π

0
· · ·

∫ 2π

0
e
−(β/2)

N∑
l=1

φ2
l ∏
1≤k<l≤N

|φk − φl |2
dφ1dφ2 . . . dφN

(2π)N
.

The integral is the Mehta integral of the Gaussian Unitary En-

semble of random matrices (M. L. Mehta, Random Matrices,

Academic Press, London, 1991) and we obtain:

T (θ, n, β) ' P2(1,1)
N∏

n=1

Γ(n)

(2π)1/2
β−N2/2 .
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The temperature dependent correlation function calculated over
the ground state in the considered limit has the following asymp-
totical behavior for the XX model

TXX(θ, n, β) '
( N∏

k,j=1

M − n + j − k

j + k − 1

)2
×

N∏
n=1

Γ(n)

(2π)1/2
β−N2/2 ,

and for the Izing limit

TSA(θ, n, β) '
( N∏

k,j=1

M −N + 2− n + j − k

j + k − 1

)2
×

N∏
n=1

Γ(n)

(2π)1/2
β−N2/2 .

The amplitudes are proportional to the squared numbers of col-
umn strict and strict plane partitions in the N ×N × (M −N −n)
box respectively.
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