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The violation of the third law of thermodynamics by the Casimir effect for
certain properties of the interacting bodies is still one of the most interesting
problems in the field.

The entropy
oOF
i

I{ should vanish for T — 0
But sometimes it does not.

first obscrved in

Bezerra, V.B. and Klimchitskaya, G.L. and Mostepanenko, V.M., PRA, 2002
for metals described by the Drude model

Geyer, B. and Klimchitskaya, G. L. and Mostepanenko, V. M., PRD 2005
for dicleetrics with de conductivity.

At present this is one of the most discussed questions in the theory of the
Casimir cffect resp of the theory of dispersion forces

Formally, it appears when applyving the permittivities of Drude model or de
conductivity to the Lifshitz formula



The Drude model, for metals, is characterized by a permittivity
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Dy o
Dlig) =14+
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w = 1€ is the imaginary frequency
Wy 18 the plasma frequency
~ 18 the relaxation parameter

for v = () we get the plasima model which does not cause problems with ther-
modynamics

A dielectric with dc conductivity is characterized by a permittivity

dmerg
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Edc(?':f) = EU(?E) +

og is the dc conductivity
go(1€) is the permittivity of a dielectric without de conductivity
(which does not cause problems with TD either)



the violation of TD occurs if the parameters o, or v are non zero, depend on
the temperature and decrease for 1" — 0:

~(T) — 0

o(t) =0 for T'— 0

This happens for some reasonable idealizations of real materials where oo de-
creases exponentially fast or v as a power of 1" (for metals with perfect crystal

lattice).

During the past decade there was quite a number of attempts to avoid a violation
of the third law.

Most of them point to a modification by including additional physical effects.
An example is the addition of impurities to a perfect crystal lattice

Another consist in using impedance boundary conditions in place of the Drude

model in the Lifshitz formula
It must be admitted that no satisfactory understanding was reached so far.



In this talk I discuss the question whether a finite size of one of the interacting
bodies is able to prevent the violation.

For this I consider a ball with the permittivities P (i€) and £9¢(i€) in front of
a conducting plane.

It must be mentioned that the configuration of a ball in front of a plane at finite
temperature is under active discussion, see for example papers by Gies&Weber
and Canaguier-Durand, Neto, Lambrecht, Reynaud in PRL 2010.



The free energy for parallel planes

Reconsidering parallel planes:

reconfirming the old results

develope a simpler and more direct derivation which is better suited for the
spherical case

Z / d2 In (1 —r7e )
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with ¢ = /& + k2, and the Matsubara frequencies § = 27T,

The reflection coefficients are

rTE = g \/( )gl +a for the TE mode and
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for the TM mode




Using the Abel-Plana formula we rewrite the free energy:
F = FEy + A F,

vacuum energy (depending on T only through ~ or o):

_Lxde [ P 2 -0
EO_Q/O w/(zwp > In(l-rie?),

i=TE, TM

temperature dependent part of the free energy:

1

ArF = 1 [ danr(e) i(ptia) - pl-io),

with the Boltzmann factor

1

and

gp(g):/ooodkk S In(1- e ),

i=TE,TM



The subdivision

f=E0+ATf,

introduced using the Abel-Plana formula is according to the photonic dof

for temperature dependent excitations of the interacting bodies also the vacuum
energy dependes on temperature

the entropy thus consists of two parts, S = Sy + &

The more conventional approach to derive the violation terms, used in the
literature, rests on the observation that the interesting terms result from the
(I = 0)-contribution to the Matsubara sum

For metallic bodies described by the Drude model:

T

FDrude — _FplasmaﬂTE L., = — 3 . e
For a dielectric body with de conductivity,
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The vacuum energy in the Drude model

we assume y(T) =y T + ...

_ OEo(y) Oy oy a1
So = 5 9T and 5T = ayy T

the expansion reads

Fo(v) = Bo(0) + 7 (— In(207) Bi + Br) + ...

these functions can be calculated quite easily, the most interesting is
E

0.0005 | so we have a contribution for 0 < o < 1
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The vacuum energy for a dielectric with dc conductivity

similar to the Drude model

~ 0Ey(0) Jo
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So = o(T)=o01T%+ ...

Again we will observe a logarithmic contribution for 7" — 0. This time it comes
from the TM mode

E()(O') = E()(O) + o (— 111(2(10') El —|—E1) =+ ... ,

in this case the function E; can be calculated explicitely
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/ again, contribution for 0 < o < 1
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The temperature dependent part of the free energy in the
Drude model

So we have to consider

p(ix) = / dk k Z In (1 —r? €—2aq) :
0

i=TE,TM

with ¢ = Vk? — x?. We divide the integration into a first region, k& € [0, x|,
and a second region, k € [z,00). We need the function ¢(ix) for small z ~ T.
Therefore, in the first part of the integration region we have £ < T and a
factor ~ T? from dk k. As a consequence, the contribution from this region is
by two additional powers of 1" suppressed as compared with the second region
where the integration region is infinite. Hence a contribution to the linear in
T term can come from the second region only. In that region we change the
variable of integration from k for ¢ = k% — x? (which is real) and arrive at
a representation of the temperature dependent part of the free energy, up to
higher orders in T', given by the above formulas but now with

p(ix) = / dq q Z In (1 — r? e_zaq) :
0

1=TE, TM



Drude model:

the leading contribution results from the TE mode.
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Now we consider o > 1, i.e., v decreases not slower than the first power of the
temperature. We make the substitution & = ~(,

1 > ~ i _ 1 1
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and observe
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the remaining integration is finite and results in
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with

reproducing the result of the [ = 0-mode



similar calculation for the dc conductivity

C 1 .
ApFIeT™ =~ (Lig(rd) — ((3))

also confirming the old result
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The free energy for a sphere in front of a plane

basic formula,

1 > . . :
ArF = 5 /(; dzny(x) iTr [In (1 — M(iz)) — In (1 — M(—ix))] ,

The matrix M(£) has the entries
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the lowest orders for & — 0,
M =My + M€+ ....

From the powers of £ it follows that only [ = { + I’ contributes and that M is
diagonal in the polarizations. The latter follows form the additional factor of &
in ]\%. For this reason, and because of the trace, the temperature dependent
part of the free energy becomes a sum of the two polarizations,

AF=AFE 4 AF™M 4 |

which holds in the orders of 1" we are interested in.



Ball described by the Drude model

Because of the Boltzmann factor np(x) = —7—, we make the substitution
T =G
1 V(A + ) S
— +... and gl — Wyt | —— + ...
P (10) p (O 7 =wny e

now we expand d'* for small (:
for the TE mode

("P(1¢) = 6(C wp) +

il(()) %l (wp ﬁ) —Zg ( 1—?—()

to (¢ wp) = k(0)7) (wp FCC) — k(0 ( \/F)

whereas for the TM mode

with
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hence we get

Drude
Ml,l'

where we defined

(¢)




we come to a formula

T >~ 1
ArF = o /0 dgg iTr [(1— MP™9e(i¢)) — (1 — MP™(—i0))] .

where it ‘remains’ to take the trace, i.e., to sum over the orbital momenta.
T
ApF = o Foun (0; wpR) + O(T7)

For the calculation of the trace one needs to make a truncation of the orbital
momenta, | < [,,. In this case it turned out that for all values of the parameters
p and w, a few lowest | < 4 are sufficient.

0.005| wp=2/

0.004 x w,=1
- /

0.003 [ /




Dielectric ball with DC c i e U ¥ ¥ A R B A 3 BB
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we get
T
ApF = o oe1(p, e0) + O(T?)

In this way we have seen that the violation of thermodynamics 3rd law appears
for a ball in front of a plane in much the same way as for infinite parallel planes



For completeness, we also calculated the case of fixed parameters, v and o,
where no violation occures

for & — 0 we note

0 _ wpR
g—D—wgng..., VeDER = % VE+

;G :§5+..., Vele¢R = JoR\/E+ ...,

in this approximation both models are related by the substitution o — wg /7

the general structure of the expansion is
Trln (1 — M™(&)) = Trin (1 — MIM) — Tr (1 - MIM) T MT™ e 4
only the odd term survives the &-integration

v T2
wy,

ArF'™ =g (p) + ...
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p = 1 corresponds to contact




Conclusions
We have now the following cases withand without violation of 3rd law of TD

Drude model ‘ dc conductivity
parallel planes
~ — 0 resp. 0 — 0
vacuum Energy TE, § <0 ™, § >0
ArF TE, § <0 ™, S >0
v resp o fixed
ArF TE, § <0 ™, § >0
and TM, § > 0
ball-plane
v — 0 resp. o =0
ArF TE, § <0 T™, S >0
~ resp o fixed
ArF TE, § <0 same as Drude
and TM, S > 0 With%ﬁa

TD violation occurs for v ~ T and T with 0 < «

at the moment it is not clear whether this is really a defect or, whether such a
behavior does not happen for real materials (in a sense of a meaningful ideal-
ization)



Thank you for attention!
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