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Outlook

1 Hopf module algebra, smash product, definitions and
quasi-deformation

2 various models of κ-Minkowski spacetime

3 Hilbert space realizations and physical applications



κ - Minkowski spacetime

example of noncommutative spacetimes.

Two points of view:

Mathematical point of view
(Hopf module algebra): twist
realization of κ−Minkowski
spacetime described as a
quantum covariant algebra,
deformation quantization of
the corresponding linear
Poisson structure.

Physically interesting: κ -
Minkowski spacetime provides
possible frameworks for
deformed (doubly) special
relativity theories (DSR).



More concrete..

Quantum deformations which lead to noncommutative
spacetimes are strictly connected with quantum groups
formalism, which are generalizations of symmetry groups.

In this way κ-Minkowski spacetime and κ-Poincare algebra are
related by the notion of module algebra (≡ covariant
quantum space) - algebraic generalization of covariant space.

Extension κ- Poincaré algebra by κ- Minkowski commutation
relations using crossed (smash) product construction.

Deformation of Weyl subalgebra provides quantum phase
space (crossproduct of κ- Minkowski algebra with algebra of
translations) .
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Definitions and examples

Hopf algebras
Smash products



Definitions

Universal enveloping algebra

Ug = Tg
Jg

where Tg-tensor (free) algebra of the vector space g and
Jg-ideal generated by < X ⊗ Y − Y ⊗ X − [X ,Y ] >: X ,Y ∈ g.

Hopf algebra is a structure that is simultaneously a (unital
associative) algebra, a (counital coassociative) coalgebra with
antipod.

Hopf algebra example

g - Lie algebra
Ug (its universal enveloping algebra) is Hopf algebra
with (for u ∈ g):

the primitive coproduct ∆0(u) = u ⊗ 1 + 1⊗ u

counit: ε(u) = 0, ε(1) = 1

antipode: S0(u) = −u; S0(1) = 1

extended by multiplicativity property to entire Ug.



Hopf module algebra - definition

(Left) Module algebra over Hopf algebra H consist of H-module
A which is simultaneously an unital algebra satisfying the following
compatibility condition:
L . (f · g) = (L(1) . f ) · (L(2) . g)
between multiplication · : A⊗A → A,
coproduct ∆ : H → H⊗H, ∆(L) = L(1) ⊗ L(2),
and (left) module action . : H⊗A → A; for L ∈ H, f , g ∈ A,
L . 1 = ε(L), 1 . f = f .

The condition:

L . (f · g) = (L(1) . f) · (L(2) . g)

generalized Leibniz rule

kkWWWWWWWWWWWWWWWWWWWW

Also

called covariance condition and the corresponding algebra A a
covariant quantum space with respect to H.
Primitive elements ∆(L) = L⊗ 1 + 1⊗ L ; normal Leibniz rule.



The covariance condition (L . (f · g) = (L(1) . f ) · (L(2) . g))
entitles us also to introduce a new unital and associative algebra,
the so-called smash (or crossed) product algebra AoH.

Smash (crossed) product - definition

Determined on the vector space A⊗H by:
(f ⊗ L)#(g ⊗M) = f (L(1) . g)⊗ L(2)M

Canonical embedding: A 3 f � f ⊗ 1 and H 3 L � 1⊗ L as
subalgebras in AoH.

Smash ; tensor product - example

Particularly, the trivial action L . g = ε(L)g makes AoH
isomorphic to the ordinary tensor product algebra A⊗H:
(f ⊗ L)#(g ⊗M) = fg ⊗ LM.



Heisenberg representation - definition

Canonical Heisenberg representation on the vector space A
reads as follows:

f̂ (g) = f · g , L̂(g) = L . g

where f̂ , L̂ are linear operators acting in A, i.e. f̂ , L̂ ∈ EndA.

If A is a universal envelope of Lie algebra h  A = Uh.
It is enough to determine the Hopf action on generators ai ∈ h but
with consistency conditions
(L(1) . ai )

(
L(2) . aj

)
− (L(1) . aj)

(
L(2) . ai

)
− ckij L . ak = 0 hold,

where [ai , aj ] = ckij ak .



Weyl algebra - example of smash product (Heisenberg double)

Weyl algebra as a crossed product of:

an algebra of translations Tn

containing Pµ generators
an algebra Xn of spacetime
coordinates xµ

More strictly, both algebras are defined as a dual pair of the
universal commutative algebras with n−generators (polynomial
algebras), i.e. :

Tn ≡ Poly(Pµ) ≡ C[P0, . . .Pn−1] Xn ≡ Poly(xµ) ≡ C[x0, . . . xn−1]

Both algebras are isomorphic to Utn ∼= Tn ∼= Xn of n−dimensional
Abelian Lie algebra tn.
Primitive Hopf algebra structure on Tn =⇒ extend the action
implemented by duality map (dual pair of Hopf algebras)
Pµ . x

ν = −ı < Pµ, x
ν >= −ıδνµ; Pµ . 1 = 0

to whole algebra Xn due to the Leibniz rule,



for example:
Pµ . (xνxλ) = δνµx

λ + δλµx
ν , induced by primitive coproduct

∆(Pµ) = Pµ ⊗ 1 + 1⊗ Pµ.

In result one obtains the following standard set of Weyl-Heisenberg
commutation relations:

[Pµ, x
ν ]# ≡ [Pµ, x

ν ] = −ıδνµ; [xµ, xν ] = [Pµ,Pν ] = 0;

as generating relations for the Weyl algebra Wn ≡ Xn o Tn.
Notice:
In the Heisenberg representation

Pµ . = −ı∂µ = −ı ∂
∂xµ

the Weyl algebra becomes an algebra of differential operators with polynomial
coefficients in Rn.

In fact, it is also Heisenberg double obtained from dual pair of
Hopf algebras.



Remark

Weyl algebra is not an enveloping algebra of any Lie algebra.
Therefore, it makes difficult to determine a Hopf algebra structure
on it. The standard way to omit this problem relies on introducing
the central element C and replacing Weyl commutation relations
by the following ones

[Pµ, x
ν ] = −ıδνµC ,

[xµ, xν ] = [C , xν ] = [Pµ,Pν ] = [C ,Pν ] = 0.

The relations above determine (2n + 1)−dimensional
Heisenberg Lie algebra of rank n + 1 .

Thus Heisenberg algebra can be defined as an enveloping
algebra for above relations.

It may provide a starting point for Hopf algebraic
deformations (not considered further on here).



Hilbert space representation

This Hopf action extends to the full algebra C∞(Rn)⊗ C of
complex valued smooth functions on Rn. Its invariant subspace of
compactly supported functions C∞0 (Rn)⊗ C form a dense domain
in the Hilbert space of square-integrable functions: L2(Rn, dxn).
Consequently, the Heisenberg representation extends to Hilbert
space representation of Wn by (unbounded) operators. This
corresponds to canonical quantization procedure and in the
relativistic case leads to Stückelberg’s version of Relativistic
Quantum Mechanics

Weyl algebra ≡ quantized phase space



Smash ; semidirect product - example

igl(n) ≡ igl(n,C) = gl(n) B tn Uigl(n) = Tn o Ugl(n)

(Left) Hopf gl(n)−action on Tn generators is: Lµν . Pρ = ıδµρPν .
Resulting algebra is described by standard set of igl(n)
commutation relations:

[Lµν , L
ρ
λ] = −ıδρνLµλ + ıδµλL

ρ
ν ; [Lµν ,Pλ] = ıδµλPν , [Pµ,Pν ] = 0

Next step: Weyl extension of gl(n) as a double crossed-product
construction Xn o (Tn o Ugl(n)) with:

[Lµν , xλ] = −ıδλν xµ, [Pµ, x
ν ] = −ıδνµ, [xµ, xν ] = 0

Action is classical: Pµ . x
ν = −ıδνµ, Lµν . xρ = −ıδρνxµ



Weyl algebra Wn becomes a subalgebra in Xn o
(
Tn o Ugl(n)

)
.

Weyl algebra (Heisenberg) realization - definition

Algebra homomorphism Xn o
(
Tn o Ugl(n)

)
→Wn provided by

Pµ → Pµ, xµ → xµ, Lνµ → xνPν

gives Weyl algebra (Heisenberg) realization of
Xn o

(
Tn o Ugl(n)

)
.

Particularly, the map Lνµ → xνPν is a Lie algebra isomorphism.

Heisenberg representation - definition

The Heisenberg realization described above induces Heisenberg
representation of Xn o

(
Tn o Ugl(n)

)
Pµ . = −ı∂µ ≡ −ı

∂

∂xµ
, xµ = xµ, Lνµ . = −ıxν∂µ

acting in the vector space Xn.



Weyl extension of the Poincare Lie algebra

Xn o (Tn o Uo(η;n)) as subalgebra in Xn o (Tn o Ugl(n)).

[Mµν ,Mρλ] = ıηµρMνλ − ıηνρMµλ − ıηµλMνρ + ıηνλMµρ

[Mµν ,Pλ] = ıηµλPν − ıηνλPµ, [Pµ,Pν ] = 0

[Pµ, xν ] = −ıηµν , [xµ, xν ] = 0

[Mµν , xλ] = ıηµλxν − ıηνλxµ
where

Mµν = ηµλL
λ
ν − ηνλLλµ.

In the Heisenberg realization: Mµν = xµPν − xνPµ,

xµ = ηµλx
λ , ηµν = (−,+,+, . . .)



Twist

”deformation theory”

Hopf −module(A,H)
--

new (deformed) objects(AF ,HF )

with the same structure

Notation:

A- Hopf module algebra over H
F- twisting element

(AF ,HF )- deformed Hopf module algebra



Twist-definition

The twisting two-tensor F is an invertible element in H⊗H which
fulfills the 2-cocycle and normalization conditions:
F12(∆⊗ id)F = F23(id ⊗∆)F , (ε⊗ id)F = 1 = (id ⊗ ε)F

which guarantee co-associativity of the deformed coproduct ∆F

and associativity of the corresponding twisted star-product .

The algebra AF is equipped with a twisted (deformed) star
-product :x ? y = m ◦ F−1 . (x ⊗ y) = (f̄α . x) · (̄fα . y)

Hopf action . remains unchanged.

F is symbolically written in the following form:
F = fα ⊗ fα ∈ H ⊗H and F−1 = f̄α ⊗ f̄α ∈ H ⊗H



Twisted Hopf algebra -definition reminder

Quantized Hopf algebra HF has non-deformed algebraic sector
(commutators), while coproducts and antipodes are subject of the
deformation:
∆F (·) = F∆(·)F−1, SF (·) = u S(·) u−1 where u = fαS(fα).

Twisted smash

Smash product AF oHF has deformed cross-commutation
relations determined by deformed coproduct ∆F .

Now determined on the vector space AF oHF by the same

relation but with ∆F (L) =
∑

i L
(i)

(1)F
⊗ L

(i)

(2)F
:

(f ⊗ L)#(g ⊗M) = f (L(1)F . g)⊗ L(2)FM.



Proposition 1: AF oHF u AoH.

For any Drinfeld twist F the twisted smash product algebra
AF oHF is isomorphic to the initial (undeformed) one AoH. In
other words the algebra AF oHF is twist independent and can be
realized by a change of generators in the algebra AoH.

but subalgebras A and AF are not isomorphic.

sketch of the proof

∀x ∈ A one can consider x̃ = (̄fα . x) · f̄α ∈ AoH.

Then x̃ · ỹ = (̄fα . (x ? y)) · f̄α and subalgebra generated by elements x̃ is
isomorphic to AF .

isomorphism is defined on generators by
AF 3 x → x̃ ∈ AoH and HF 3 L→ L ∈ AoH
due to invertibility of twist: x = (f α . x̃) ? fα

and then the isomorphism can be described as a change of generators
(”basis”): (xµ, Lk)→ (x̂µ, Lk) in AoH.



Twisted deformation of some Lie algebra g requires a
topological extension of the corresponding enveloping algebra
Ug into an algebra of formal power series Ug[[h]] in the
formal parameter h (twisting element has to be invertible).

Hopf module algebra A has to be extended by h−adic
topology to A[[h]] as well.

h-adic topology primer

Elements of the C[[h]] are in the form:

C[[h]] 3 a =
∞∑
n=0

anh
n

where an are complex coefficients and h is indeterminate.
One can also see this ring as C[[h]] = ×∞n=0C which elements are
(infinite) sequences of complex numbers (a0, a1, ..., an, ...) with
powers of h just ”enumerating” the position of the coefficient.



The structure of ring C[[h]] is determined by:
a + b :=

∑∞
n=0(an + bn)hn, a · b :=

∑∞
n=0(

∑∞
r+s=n arbs)hn.

The ring is equipped with the so-called ”h-adic” topology:

which is determined a by h-adic ”ultra-norm” || · ||ad which is
defined by:

||
∞∑
n=0

anh
n||ad = 2−n(a)

where n(a) is the smallest integer such that an 6= 0 (for a ≡ 0
one sets n(a) =∞ and therefore ||0||ad = 0).

with the properties:
0 ≤ ||a||ad ≤ 1 ||a + b||ad ≤ max(||a||ad , ||b||ad)
||a · b||ad = ||a||ad ||b||ad ||hk ||ad = 2−k

This norm is discrete (with values in inverse powers of 2).

The elements a ∈ C[[h]] are invertible if an only if ||a||ad = 1.

The ring C[[h]] is complete in h-adic topology.



Topologically free module-definition

Considering V as complex vector space the set V [[h]] contains all
formal power series v =

∑∞
n=0 vnh

n with coefficients vn ∈ V .
Therefore V [[h]] is a C[[h]]-module. More generally in the
deformation theory we are forced to work with the category of
C[[h]]-modules. V [[h]] provides an example of topologically free
modules. Particularly if V is finite dimensional it is also free
module. Any basis (e1, ..., eN) in V serves as a system of free
generators in V [[h]]. More exactly

∞∑
k=0

vkh
k =

N∑
a=1

xaea

where the coordinates xa =
∑∞

n=0 x
a
nh

n ∈ C[[h]]. It shows that
V [[h]] is canonically isomorphic to V ⊗ C[[h]].



Twist deformation of Weyl algebra-example

h-adic extension Uigl(n) � Uigl(n)[[h]] =⇒ Xn � Xn[[h]], which
remains to be (undeformed) module algebra under C[[h]]-extended
Hopf action ..
Smash product contains h-adic extension of the Weyl algebra:

Wn[[h]] = Xn[[h]] o Tn[[h]] ⊂ Xn[[h]] o
(
Tn[[h]] o Ugl(n)[[h]]

)
igl(n)−twist F can deform simultaneously both:
Uigl(n)[[h]] 7→ Uigl(n)[[h]]F and Xn[[h]] 7→ (Xn[[h]])F keeping the
Hopf action . unchanged.



Deformed algebra Xn[[h]]F has deformed star multipication ? and
can be represented by deformed ?−commutation relations

[xµ, xν ]? ≡ xµ ? xν − xν ? xµ = ı hθµν(x) ≡ ı h(θµν + θµνλ xλ + . . . )

replacing the undeformed (commutative) ones where the
coordinate functions (xµ) play a role of generators for the
corresponding algebras: deformed and undeformed one.
Deformed Weyl algebra:

Wn[[h]]F = Xn[[h]]F o Tn[[h]]F

Tn[[h]]F denotes the corresponding Hopf subalgebra of deformed

momenta in
(
Tn[[h]] o Ugl(n)[[h]]

)F
.



Proposition 2: Xn[[h]] o Uigl(n)[[h]] u Xn[[h]]F o (Uigl(n)[[h]])F

Proposition 1 (AF oHF u AoH )implies that
Xn[[h]] o Uigl(n)[[h]] is C[[h]] isomorphic to

Xn[[h]]F o (Uigl(n)[[h]])F . Moreover, this isomorphism is congruent
to the identity map modulo h.

Proposition 3: Wn[[h]]F u Wn[[h]]

All igl(n)−twist deformed Weyl algebras Wn[[h]]F are
C[[h]]-isomorphic to undeformed h-adic extended Weyl algebra
Wn[[h]].

Pseudo-deformation -definition

In this sense we can say that Wn[[h]]F is pseudo-deformation of
Wn[[h]] since the latter one can be obtained by (nonlinear and
invertible) change of generators from the first one.



Remark

The deformed algebra Xn[[h]]F makes up a deformation
quantization of Xn equipped with the Poisson structure (brackets)

{xµ, xν} = θµν(x) ≡ θµν + θµνλ xλ + θµνλρx
λxρ . . .

represented by Poisson bivector θ = θµν(x)∂µ ∧ ∂ν . We assume
that θµν(x) are polynomial functions, where θµν , θµνλ , θµνλρ . . . are
real numbers.



κ−Minkowski Poisson structure

Covariant deformation quantization of the κ−Minkowski Poisson
structure is represented by the linear Poisson bivector
θκM = xk∂k ∧ ∂0 , k = 1 . . . n − 1 on Xn.
There is one-to-one correspondence between linear Poisson
structure θ = θµνλ xλ∂µ ∧ ∂ν on Xn and n−dimensional Lie algebra
g ≡ g(θ)

[Xµ,X ν ] = ı θµνλ Xλ

with the constants θµνλ playing the role of structure constants.
Corresponding universal enveloping algebra Ug is canonical
quantization of (g∗, θ) (Kontsevich).



One can consider the following modification of the universal
enveloping algebra construction Uh(g) = Tg[[h]]

Jh
where Jh

denotes an ideal generated by elements
< X ⊗ Y − Y ⊗ X − h[X ,Y ] > and is closed in h-adic
topology
In other words the algebra Uh(g) is h-adic unital algebra
generated by h−shifted relations [X µ,X ν ] = ı hθµνλ X

λ

imitating the Lie algebraic ones ([Xµ,X ν ] = ı θµνλ Xλ).
This algebra provides the so-called universal quantization of
(Xn, θ)
Moreover, There is a surjective algebra homomorphism
Uh(g) −→ (Xn[[h]])F for a suitable twist F
In the the case of θκM the corresponding Lie algebra is a
solvable one
We denote it as ann−1 (Borel subalgebra of o(1, n)) (dim n,
rank n − 1
its Lie algebraic counterpart the canonical κ− Minkowski
spacetime algebra Uann−1 (will be introduced later on).



Kappa- Minkowski spacetime

1 Twisted 2
universal 3 Canonical



Twisted Kappa- Minkowski spacetime - as igl(n) Hopf module
algebra

Two one-parameter families of twists corresponding to twisted
star-product realization of the κ−deformed Minkowski spacetime
algebra.
(Xn[[h]])F is generated by relations:

[x0, xk ]? = ı hxk ; [xk , x j ]? = 0 , k , j = 1 . . . n − 1

and constitutes a covariant algebra over deformed igl(n)[[h]].
Notice:

1 h is the formal parameter. So above algebra is not a Lie
algebra

2 the result of star multiplication of two generators xµ ? xν is
explicitly twist dependent, but the generating relations
(commutators) are twist independent

3 all algebras (Xn[[h]])F are mutually isomorphic to each other



Abelian family of twists providing κ−Minkowski spacetime

As = exp [ı h (sP0 ⊗ D − (1− s)D ⊗ P0)]

Note:

All twists correspond to the same classical r-matrix:
r = D ∧ P0

and they have the same universal quantum r-matrix which is
of exponential form: R = A21

s A−1
s = eıD∧P0

The Heisenberg realization of it coincides with the Poisson
bivector.

This implies that corresponding Hopf algebra deformations of
Uigl(n)[[h]]F for different values of parameter s are isomorphic.

Indeed, As are related by trivial twist: As2 = As1FW12 , where
W12 = exp (ı(s1 − s2)aDP0).



s-deformed phase space -Abelian twist

Smash product construction (for given ∆s) together with classical action leads

to crossed commutators:

[x̂µ,P0]s = iδµ0 ; [x̂µ,Pk ]s = iδµk e
h(1−s)P0 − ihsδµ0Pk

Together with commutators involving x̂µ, Lνµ, κ- Minkowski

spacetime and igl(n) relations they form: Xn[[h]]F o Uigl(n)[[h]]F .

The change of generators (Lνµ,Pρ, x
λ) � (Lνµ,Pρ, x̂

λ
s ), where

x̂ is = x ie(1−s)hP0 , x̂0
s = x0 − hs D

implies the isomorphism from Proposition 1 (AF oHF u AoH).
Heisenberg representation acting in the vector space Xn[[h]]:

x̂ is = x ie(1−s)hP0 , x̂0
s = x0 − hsxkPk

give rise to Hilbert space extension acting in L2(Rn, dxn)[[h]] provided that
Pk = −ı∂k .



Jordanian family for κ−Minkowski spacetime

Jordanian twists have the following form:

Jr = exp (Jr ⊗ σr )

whereJr = ı( 1
rD − L0

0) with a numerical factor r 6= 0 labeling
different twists and σr = ln(1− h rP0).

The corresponding classical r-matrices are the following:
rJ = Jr ∧ P0 = 1

rD ∧ P0 − L0
0 ∧ P0

For different values of the paprameter r classical r−matrices
are not the same.

r−deformed phase space Wn[[h]]F

Smash product construction (for fixed value of the parameter r) of
momentum algebra with κ- Minkowski algebra gives the following
crossed commutators:

[x̂µ,P0]r = iδµ0 e
σr = iδµ0 (1− hrP0); [x̂µ,Pk ]r = iδµk (1− hrP0)−

1
r



Jordanian Heisenberg realizations

Position-momentum-gl(n) algebra extension one gets adding to
above r−deformed phase space commutators containing x̂µ, Lνµ.
Heisenberg realization is now in the following form:

x̂ ir = x i (1− raP0)−
1
r , and x̂0

r = x0(1− raP0).
Note:

the above formulas take the same form before and after
Heisenberg realization

that commutation relation ([x̂µ,P0]r = iδµ0 e
σr =

iδµ0 (1− hrP0); [x̂µ,Pk ]r = iδµk (1− hrP0)−
1
r ) can be

reached by this nonlinear change of generators:
(Pρ, x

λ) � (Pρ, x̂
λ
r ).

This illustrates Propositions 2
(Xn[[h]] o Uigl(n)[[h]] u Xn[[h]]F o (Uigl(n)[[h]])F ) and

3(Wn[[h]]F u Wn[[h]]) for the Jordanian case.

In the Heisenberg realization the classical r−matrices coincide
with Poisson bivector



2 Universal Kappa- Minkowski
spacetime

as κ- Poincaré Hopf module
algebra



h-adic κ- Poincaré Hopf module algebra

Intro:

1 Quantum deformations of Lie algebra are controlled by
classical r -matrices

2 r -matrices satisfying classical homogeneous Yang-Baxter
(YB) equation the co-algebraic sector is twist-deformed while
algebraic one remains classical and twisting Hopf modules
(previous case: Twisted Kappa- Minkowski)

3 For inhomogeneous r -matrices one applies Drinfeld-Jimbo
quantization instead:

simultaneous deformations of the algebraic and
coalgebraic sectors and applies to semisimple Lie algebras

4 it implies existence of classical basis for Drinfeld-Jimbo
quantized algebras



1 Drinfeld-Jimbo procedure cannot be applied to the Poincaré
non-semisimple algebra

2 Nevertheless, quantum κ−Poincaré group shares many
properties of the original Drinfeld-Jimbo quantization

3 These include existence of classical basis, the square of
antipode and solution to specialization problem

4 There is no cocycle twist related with Drinfeld-Jimbo
deformation. Drinfeld-Jimbo quantization has many
non-isomorphic forms



κ−Poincaré with ”h-adic” topology

io(1, 3) with a convenient choice of ”physical” generators
(Mi ,Ni ,Pµ):

[Mi , Mj ] = ı εijkMk ; [Mi , Nj ] = ıεijk Nk ;
[Ni ,Nj ] = −ıεijkMk ; [Pµ,Pν ] = [Mj ,P0] = 0;

[Mj ,Pk ] = ıεjklPl ;
[Nj , Pk ] = −ıδjk P0, [Nj ,P0] = −ıPj

Hopf algebra can be defined on Uio(1,3)[[h]] by establishing
deformed coproducts of generators:
∆κ (Mi ) = ∆0 (Mi ) = Mi ⊗ 1 + 1⊗Mi

∆κ (Ni ) =

Ni ⊗ 1 +
(
hP0 +

√
1− h2P2

)−1 ⊗ Ni − hεijmPj

(
hP0 +

√
1− h2P2

)−1 ⊗Mm

∆κ (Pi ) = Pi ⊗
(
hP0 +

√
1− h2P2

)
+ 1⊗ Pi

∆κ (P0) = P0 ⊗
(
hP0 +

√
1− h2P2

)
+

(
hP0 +

√
1− h2P2

)−1 ⊗ P0 +

hPm

(
hP0 +

√
1− h2P2

)−1 ⊗ Pm

and deformed antipodes.



Note: above expressions are formal power series in the
formal parameter h.

This determines celebrated κ−Poincaré quantum group on
Uio(1,3)[[h]]
with parameter h of [lenght] = [mass]−1 dimension. In
contrast to the original form the coproduct is written in the
classical Poincaré basis.

Since it is Drinfeld-Jimbo type deformation with h-adic
topology we shall denote it as Uio(1,3)[[h]]DJ .



Since κ- Poincaré Hopf algebra presented above is not obtained by
twist deformation one needs new construction of κ-Minkowski
spacetime as a Uio(1,3)[[h]]DJ (Hopf) module algebra.

”h-adic” universal κ−Minkowski spacetime

Uh(an3)-universal κ−Minkowski spacetime
with defining relations:

[X 0,X i ] = ı hX i ; [X j ,X k ] = 0

Note: Due to universal construction there is a C[[h]]−algebra
epimorphism of Uh(an3) onto X4[[h]]F for any κ−Minkowski twist
F . The algebra X4[[h]] is by construction a topologically free
C[[h]]−module. For the case of Uh(an3) this question is open.

Before using smash product construction one has to assure that
κ−Minkowski algebra Uh(an3) is Uio(1,3)[[h]]DJ -module.



Remark

As it was already noticed that the algebra Uh(an3) is different than
Uan3 [[h]]. Assuming Pµ . X ν = ıaδνµ and [X 0,X k ] = ıbX k one
gets the following relation:

b = −ah

Particulary, our choice a = −1 does imply b = h.
In contrast b = 1 requires a = h−1 what is not possible for formal
parameter h. This explains why the classical action cannot be
extended to the unshifted generators X ν and entire algebra
Uan3 [[h]]. The last one seemed to be the most natural candidate
for κ−Minkowski spacetime algebra in the h-adic case.



DSR algebra

DSR algebra as a crossed product extension of κ -Minkowski and
Poincaré algebras: Uh(an3) o Uio(1,3)[[h]]DJ with
cross-commutation relations:
[Mi ,X0] = 0 [Ni ,X0] = −ıXi − ıhNi , [Mi ,Xj ] = ıεijkXk

[Ni ,Xj ] = −ıδijX0 + ıhεijkMk

[Pk ,X0] = 0, [Pk ,Xj ] = −ıδjk
(
hP0 +

√
1− h2P2

)
[P0,Xj ] = −ıhPj , [P0,X0] = ı

√
1− h2P2

in a covariant form:

[Mµν ,Xλ] = ı ηµλXµ − ı ηνλXµ − ı aµMνλ + ı aνMµλ

where aµ = ηµνa
ν ; (aν) = (h, 0, 0, 0).



Uh(an3) o Uio(1,3)[[h]]DJ as pseudo-deformation of Weyl-extended
Poincare

DSR algebra Uh(an3) o Uio(1,3)[[h]]DJ as introduced above is a
deformation of the inhomogeneous special orthogonal algebra for
the Lorentzian, i.e. gµν = ηµν , case.
The latter can be obtained as a limit of the former when h→ 0 by
nonlinear change of generators in undeformed algebra.
To this aim we use covariant Heisenberg realizations proposed by

Meljanac et al.: X̂ µ = xµ
(
hp0 +

√
1− h2p2

)
− hx0pµ;

M̂µν = Mµν ; P̂µ = pµ.
But we do not require Heisenberg realization for Mµν (In
Heisenberg realization Mµν = xµpν − xνpµ).
There exist huge class of Heisenberg realizations of above DSR
algebra Uh(an3) o Uio(1,3)[[h]]DJ .



Why one considers deformed Casimir for κ−Poincaré?

The center of the algebra Uio(1,3)[[h]]DJ is an algebra over
C[[h]].
Therefore one can consider deformation of the classical
Poincaré Casimir operator P2. In fact for any power series of
two variables f (s, t) the element: Cf = f (P2, h) ∈ Z . The
reason of using deformed Casimir is that the standard one
fails to satisfy

[P2,X µ] = 2Pµ

due to noncommutativity of Xµ.
Considering deformed Casimir one has freedom to choose the
form of function f . The choice

C2
h = 2h−2

(√
1 + h2P2 − 1

)
preserves the classical properties:

[Mµν , C2
h ] = [C2

h ,Pµ] = 0; [C2
h ,Xµ] = 2Pµ

.



Dispersion relations

The standard Poincaré Casimir gives rise to undeformed dispersion
relation:

P2 + m2
ph = 0

where mph is mass parameter. The second Casimir operator leads
to deformed dispersion relations

C2
h + m2

h = 0

with the deformed mass parameter mh. Relation between this two
mass parameters has the following form:

m2
ph = m2

h(1− h2

4
m2

h)

For photons mph = mh = 0.



Realizations

Particularly important is the so-called non-covariant family of
realizations, labeled by two arbitrary (analytic) functions ψ, γ.

Convenient notation

For a given (analytic) function f (t) =
∑

fnt
n of one variable we

shall denote by

f̃ = f (−hp0) =
∑

fn(−1)npn0h
n ∈W4 (1)

the corresponding element f̃ ∈W4[[h]].
We will use also:

Ψ(t) = exp

(∫ t

0

dt ′

ψ(t ′)

)
; Γ(t) = exp

(∫ t

0

γ(t ′)dt ′

ψ(t ′)

)
for an arbitrary choice of ψ, γ such that ψ(0) = 1.



Generators of deformed Weyl algebra Uh(an3) o T[[h]]DJ

admit the following Heisenberg realization:

X i = x i Γ̃Ψ̃−1, X 0 = x0ψ̃ − hxkpk γ̃

together with

Pi = pi Γ̃
−1, P0 = h−1 Ψ̃−1−Ψ̃

2 + 1
2h~p

2Ψ̃Γ̃−2

. The remaining DSR algebra generators in terms of undeformed
Weyl algebra W4[[h]]-generators (xµ, pν) are the following:

Mi = ıεijkxjpk = ıεijkXjPkΨ̃

Ni = h−1xi Γ̃
Ψ̃−1 − Ψ̃

2
−x0pi ψ̃Ψ̃Γ̃−1+

ı

2
hxi~p

2Ψ̃Γ̃−1−hxkpkpi γ̃Ψ̃Γ̃−1

= (XiP0 −X0Pi )Ψ̃



The deformed Casimir operator reads as:

Ch = h−2(Ψ̃−1 + Ψ̃− 2)− ~p2Ψ̃Γ̃−2

Above realization has proper classical limit:
X µ = xµ, Mµν = xµpν − xνpµ, Pµ = pµ as h→ 0. Moreover
measurable frame is provided by (commuting) position xµ

operators and local, physically measurable, momentum pµ = −i∂µ,
which is important in DSR theories interpretation.

Commutative coordinates

besides κ−Minkowski coordinates X µ one can also introduce usual
(commuting) Minkowski like coordinates x̃µ

.
= X µΨ−1 which differ

from xµ. The rotation and boost generators expressed above take
then the familiar form:

Mi = ıεijk x̃jPk and Ni = (x̃iP0 − x̃0Pi )



All twisted realizations are special case of the one above for special
choice of the functions ψ, γ.

Abelian realization

x̂ is = x ie(1−s)hP0 , x̂0
s = x0 − hsxkPk

one gets taking constant functions ψ = 1 and γ = s. Hermiticity
of x̂0 forces γ = 0.

Jordanian realization

x̂ ir = x i (1− raP0)−
1
r , x̂0

r = x0(1− raP0)

requires ψ = 1 + rt and γ = 0.



Physical consequences of DSR algebra formalism

d’Alembert operator is played by Casimir operator of κ Poincare
algebra: (

Cκ −m2
κ

)
ωp = 0

where ωp = exp (ı pµx
µ) represents the plane wave with the wave

vector p = (pµ).
For photons: m = mκ = 0 deformed Klein-Gordon equation puts
constraint on wave vector pµ in the following form of dispersion
relation:

|~p| = −κ

(
1− exp

(
−
∫ − p0

κ

0

da

ψ(a)

))
exp

(∫ − p0
κ

0

γ(a)da

ψ(a)

)
which takes approximate form:

|~p| ' p0

(
1− b1

p0

κ
+ b2

p2
0

κ

)



Deformed dispersion relation leads to time delay :

∆t ' − l

c

p0

κ

(
2b1 − 3b2

p0

κ

)
where l is a distance from the source of high energy photons.

Jordanian one-parameter family of Drinfeld twists
.
The time delay for photons is:

∆t ' − l

c

p0

κ

(
−(1 + r)− (1 + 3r + 2r2)

p0

2κ

)
=

=
l

c

p0

κ

(
1 + r + (1 + 3r + 2r2)

p0

2κ

)
Time delay from Abelian twists

∆t = − l

c

|~p|
κ

(
2s − 1 +

|~p|
2κ

s(s − 1)

)



Standard version of DSR : s = 1

As an example let us choose : Ψ = exp(−hp0), Γ = exp(−hp0).
Then the representation of the Poincaré Lie algebra in this Hilbert
space has the form:

Mi =
1

2
εijm(xjpm − xmpj)

Ni =
1

2h
xi

(
e−2hp0 − 1

)
+ x0pi +

ih

2
xi ~p

2 + h xkpk pi

Pi = pie
hp0 , P0 = h−1 sinh(hp0) +

h

2
~p2ehp0

Moreover, one can easily see that the operators (Mi ,Ni , pµ)
constitute the bicrossproduct basis. Therefore, dispersion
relation expressed in terms of the canonical momenta pµ recovers
the standard version of doubly special relativity theory.

Ch = h−2(e−
1
2
hp0 − e

1
2
hp0)2 − ~p2ehp0 implies

m2
κ = [2h−1 sinh(hp0

2 )]2 − ~p2ehp0 , ∆t = − l
c
|~p|
κ



3 Canonical Kappa- Minkowski
spacetime

as q−analog κ-Poincaré Hopf
module algebra



Motivation for q−analog κ-Poincaré Hopf module algebra

Intro:

1 ”q-analog” version allows us to fix the value of the parameter
κ.

2 This new approach is based on reformulation of Hopf algebra
in such a way to cancel infinite series, this allows us to obtain
one parameter family of isomorphic Hopf algebras enumerated
by numerical parameter κ.

3 From mathematical point of view, this means that parameter
κ is irrelevant. However from physical point of view value of κ
depends on system of units we are working in, one can use
natural (Planck) system of units ~ = c = κ = 1 without
changing mathematical properties of the underlying quantum
model.

This is so-called ”specialization” procedure .



”q-analog” of κ−Poincaré algebra

The idea is to introduce two group-like elements
Π0,Π

−1
0 :Π−1

0 Π0 = 1.
Π0 and Π−1

0 are considered mutually inverse.
Now a universal, unital associative algebra generated by eleven
generators (Mi ,Ni ,Pi ,Π0,Π

−1
0 ) has the following set of

commutation relations:

Π−1
0 Π0 = Π0Π−1

0 = 1, [Pi ,Π0] = [Mj ,Π0] = 0, [Ni ,Π0] = − ı
κ
Pi

[Ni ,Pj ] = − ı
2
δij

(
κ(Π0 − Π−1

0 ) +
1

κ
~P2Π−1

0

)
remaining ones between (Mi ,Ni ,Pi ) are the same as in the
Poincare Lie algebra.



The quantum algebra structure Uκ(io(1, 3)) is provided by defining
coproduct, antipode and counit, i.e. a Hopf algebra structure. We
set

∆ (Mi ) = Mi⊗1+1⊗Mi ∆ (Ni ) = Ni⊗1+Π−1
0 ⊗Ni−

1

κ
εijmPjΠ

−1
0 ⊗Mm

∆ (Pi ) = Pi⊗Π0+1⊗Pi ∆(Π0) = Π0⊗Π0, ∆(Π−1
0 ) = Π−1

0 ⊗Π−1
0

and the antipodes.

Corresponding version of κ -Minkowski spacetime (canonical κ
-Minkowski spacetime) is universal enveloping algebra of solvable
Lie algebra without h-adic topology.



In this version κ−Minkowski spacetime commutation relations
have the form:

[X 0,X i ] =
ı

κ
X i ; [X i ,X j ] = 0

Now we assume that κ ∈ C∗ takes numerical value (specialization),
which could be identified with κ = MQ - quantum gravity scale.
Above relations define solvable Lie algebra an3 . Take Uan3 =M4

κ

to be usual enveloping algebra of an3, i.e.

M4
κ = Uan3 =

Tan3

J

J and ideal generated by those relations. And this introduces

canonical κ−Minkowski spacetime M4
κ as universal enveloping

algebra of solvable Lie algebra without dependence on κ

To assure that canonical κ−Minkowski algebra M4
κ in this case is

a Uκ(io(1, 3)) (Hopf) module algebra one has to check consistency
conditions. Then it can be used in crossed product construction.



Uκ(io(1, 3)) acts covariantly on M4
κ:

Pi . X
ν = −iδνi ; Mµν . X

ρ = −iXµδρν + iXνδ
ρ
µ;

Π±0 . Xµ = Xµ ∓ ıκ−1δµ0 .

Canonical DSR algebra M4
κ o Uκ(io(1, 3))

[Mi ,X0] = 0 [Ni ,X0] = −ıXi − ı
κNi

[Mi ,Xj ] = ıεijlXl [Ni ,Xj ] = −ıδijX0 + ı
κεijlMl

[Pk ,X0] = 0, [Pk ,Xj ] = −ıδjkΠ0

[Xi ,Π0] = 0, [X0,Π0] = − ı
κΠ0

Notice:

”q-analog” version of DSR algebra is not a
pseudo-deformation type as the one introduced in ”h-adic”
case.

The most interesting subalgebra of M4
κ o Uκ(io(1, 3)) is

canonical Weyl algebra W4
C (canonical phase space) given by

last two lines of above relations and κ- Minkowski algebra.



Representation in the Hilbert space

Let us first introduce operator realization of analytic function

f̌ =

∫
f (t)dEκ(t)

as a spectral integral with spectral measure dEκ(t) corresponding
to self-adjoint operator Eκ(t) = − ı

κ∂0, where κ ∈ R∗. Notice that
E1 = p0.
One can introduce Heisenberg representation in the Hilbert space
L2(R4, dx4) of M4

κ o Uκ(io(1,3))-Canonical DSR algebra realization
(non-covariant one).



Then Hilbert space (Heisenberg) representation of DSR
algebra generators has the form (functions Ψ, Γ are the same
as before):

X i = x i Γ̌Ψ̌−1, X 0 = x0ψ̌ − hxkpk γ̌;

Π0 = Ψ̌−1; Pi = pi Γ̌
−1

as Heisenberg realization of Weyl algebra (phase space)

and the rest of generators

Mi = ıεijkxjpk

Ni = κxi Γ̌
Ψ̌−1 − Ψ̌

2
−x0pi ψ̌Ψ̌Γ̌−1+

ı

2κ
xi~p

2Ψ̌Γ̌−1−1

κ
xkpkpi γ̌Ψ̌Γ̌−1

with Casimir operator as: Cκ = κ2(Ψ̌−1 + Ψ̌− 2)− ~p2Ψ̌Γ̌−2

Here pµ = −ı∂µ and xν are self-adjoint operators acting in Hilbert
space L2(R4, dx4). This leads to the Stückelberg version of
relativistic Quantum Mechanics.



Quantization of relativistic symplectic structure

Alternatively, one can consider relativistic symplectic structure

{xµ, xν} = {pµ, pν} = 0, {xµ, pν} = δµν

determined by the symplectic two-form ω = dxµ ∧ dpµ on the
phase space R4 ×R4. Now we can interpret formulas for the fixed
value h = 1

κ as a non-canonical transformation (change of
variables) in the phase space. Thus in this new variables one gets
κ−deformed phase space with deformed Poisson brackets replacing
the commutators ([Pµ,Xν ]): { , }κ = 1

ı [ , ] . Therefore, the
operators stand for true (Hilbert space) quantization of this
deformed symplectic structure.



Magueijo-Smolin model

As a yet another example let us consider deformed phase space of
Magueijo-Smolin model:

{Xµ,X ν} =
1

κ
(aµX ν − aνXµ)

{Pµ,Pν} = 0, {Xµ,Pν} = δµν +
1

κ
aµPν

It corresponds to the following change of variable in the phase
space:

Xµ = xµ − aµ

κ
xνpν , Pµ = pµ

We do not know twist realization for this algebra.



Conclusions

From the mathematical point of view we discuss two main cases
(two mathematically different models of

κ-Poincare and κ-Minkowski:

h-adic q-analog

h-adic DSR algebra Canonical DSR algebra

However we also point out that one should be aware that only
a ”q-analog” version of κ-Poincare/κ-Minkowski has to be
considered if one wants to discuss physics.
Moreover we have shown that the deformed algebra is a
pseudo-deformation of an undeformed one, in a sense of
change of generators.
it is only possible after either h-adic extension of universal
enveloping algebra or by introducing additional generator
(Π0).



From the physical point of view we focus only on one model of

κ-Poincare and κ-Minkowski:

q-analog

Canonical DSR algebra

In this case κ - Minkowski algebra is an universal envelope of
solvable Lie algebra without h-adic topology.

This version allows us to connect the parameter κ with some
physical constant, like, e.g., quantum gravity scale or
Planck mass and all the realizations might have physical
interpretation.
Together with this connection a physical interpretation for deformation
parameter κ, as second invariant scale, appears naturally within DSR
theory and allows us to interpret deformed dispersion relations as valid at
the ”κ-scale” (as Planck scale or Quantum Gravity scale) when quantum
gravity corrections become relevant.



Realizations of DSR algebras lead to physically different
models of DSR theory.

What is important in our approach that it is always possible
to choose physical frame (physically measurable momenta and
position) by undeformed Weyl algebra which makes clear
physical interpretation of such DSR theories. This implies that
various realizations of DSR algebras are written in terms of
the standard (undeformed) Weyl-Heisenberg algebra .

Heisenberg representation in Hilbert space is provided.

Realizations of deformed phase spaces (deformed Weyl
algebra) contributes to Phase-Space-Algebra approach to DSR
.



This implies that various realizations of DSR algebras are written
in terms of the standard (undeformed) Weyl-Heisenberg algebra
which opens the way for quantum mechanical interpretation DSR
theories in a more similar way to (proper-time) relativistic
(Stuckelberg version) Quantum Mechanics instead (in Hilbert
space representations contexts).

Open question

With this interpretation one can go further and ask if deformed
special relativity is a quantization of doubly special relativity.


