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Formulation of the problem

@ reaction-diffusion model - single species of particdedo random walk in
space and, whenever they meet, undergo the reafstiol — () (inert) at

rate\
o Rate equation for mean densitjt, x):
on 5
— =DV?n—2xn®
ot v

n(@ - pair correlation (probability to find two particles in the same place
o n@ ~ n? - reaction-limited case i << Treact

o If 7git >> Treact - diffusion limited case= fluctuation of density must be
taken into account
attempt to do it by adding a noise term as in Langevin approach:
on 2 5
— =DV n—-2\n
at ¢
this simple-minded approach is dubious
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Formulation of the problem

)
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Generally we have a typical many-body problem, where particles can |
created or annihilated and the total number of particles is not conserve
Suitable approach: methods of kinetic theory

Master equation: time evolution of the probabilRy«) of finding a system
in a microstatex

) _ 3 RoooP(9) = 3 RecsP(e)

Transition rate®R determined in a specific model

"Second quantization” formalism: allows to rewrite the problem in the
language of creation-annihilation operators in Fock space, to use QFT
finally formulate it as a functional integral with effective dynamical actic
Dynamic action of the diffusion-limited annihilation reactién- A — ()

S = —/Ooodt/dx {watw — Doy tV2y

T+ AoDo 20 + ()2 ¢2}+no JESRC
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Formulation of the problem

@ Our primary aim: to investigate influence of random drift field (turbulen
fluctuations, thermal fluctuations) on dynamics of annihilation reaction
find universal critical regimes by RG approach and decay law folagaeer
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Formulation of the problem

@ Our primary aim: to investigate influence of random drift field (turbulen
fluctuations, thermal fluctuations) on dynamics of annihilation reaction
find universal critical regimes by RG approach and decay law folagaeer
density

@ we have carried out the analysis in two-loop approximation (calculatec
RG functions, fixed points and its stability) for cases when statistics of
velocity field is prescribed —like in rapid change Kraichnan model — or
determined by stochastic Navier-Stokes equation. Details of our analy
and calculation will be presented on Thursday by Tomas Lucivjansky
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@ In my presentation | would like to analyse a more general situation wh
we have possibility to eliminate particles due to the existence of rando
sink or to produce patrticles due to contact with random source.
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Random sources and sinks in the master equation

In my presentation | would like to analyse a more general situation wh
we have possibility to eliminate particles due to the existence of rando
sink or to produce patrticles due to contact with random source.

Introduction of random sink and source: Langevin approach is ritztde
for such processes- attempt to introduce them directly to the master
equation

no unique way to introduce random sources in the master equation
corresponding to the random noise of the mean-field (Langevin)
description.

the simplest choice: to model the sink by reactfors> X and source by
reactionY — A, whereX andY stand for particle baths of the sink and th
source

N. G. van Kampen, Stochastic processes in physics and chemistry
(North-Holland, Amsterdam, 1984)
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Random sources and sinks in the master equation

@ Master equation with inclusion of random sourses and sinks (homoge!
case)
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+ p—[(n+1)P(t,n+1) —nP(t,n)]...

P(t, n) - probability to findn particles at the time instaihin the system
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Random sources and sinks in the master equation

@ Master equation with inclusion of random sourses and sinks (homoge!
case)

= pyV [P(t7 n-— 1) - P(t7 n)]
+ p—[(n+1)P(t,n+1) —nP(t,n)]...

P(t, n) - probability to findn particles at the time instaihin the system
@ 4 andu_ - reaction constants of the creation and annihilation reactior
@ annihilation process: transition rate - proportional to the particle numbs

@ creation process: transition rate - proportional to the volume of
homogeneous systevh

@ reaction-rate equation

d(n)

‘Iif* = [L%.\/ — lL__<n> + ...

(n) - mean particle number
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Random sources and sinks: Doi approach

o Doi approach
M. Doi, J. Phys. A: Math. Ger@ (1976) 1465, 1479
see alsd.Cardy, Field Theory and Nonequilibrium Statistical Mechanic
Troisieme cycle de la Physique en Suisse Romand& dcatémique

1998-1999, semestreé&tc

7130
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Random sources and sinks: Doi approach

o Basic steps

e P(t,n) - probabilities to finch particles at the time instahbn a fixed
lattice site
description of spatial dependence: by labeling the particle number by 1
coordinates of the lattice and introducing necessary sums and produc
over the lattice sites

@ Basis vectors of the Fock space: Usual annihilation and creation ofger:
4, &t and the vacuum vectoD ):

a0) =0 , a"n)=|n+1)

[a,a] = aat—ata=|

normalization:( n| m) = nldpnm
o State vector: contains all information about the system:

|®) = P(t,n)n)
n=0
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Random sources and sinks: Doi approach
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Random sources and sinks: Doi approach

@ Master equations for a birth-death process
Single evolution equation for the state vector:
[*]
de) .
—t =L(at a|e
i —La@tae)
o Liouville operator
Lg(a™,a) = py Vv (a" —1) +pu_ (1 —a")a,
| - identity operator
@ Expectation value of any functida(n) of random particle number:

(F(t)) = > F(mP(t,n)
n=0
Form of the functional integral over the functions of tidaanda:
(F(t) = / DaDaFy[(at) + Lat)e™ |

Fn(@a) - normal form of the operatdf(a+a)
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@ S - dynamic action

Si(aa) /dt (t)oa(t) + pyVa(t) — p_at)a(t)]. ..

@ Assumption: transition ratgs. - random functions uncorrelated in time
Their probability distribution: momentg.'}) = E4

@ Spatially inhomogeneous system: introduction of a lattice subscript as
spatial argument
volumeV: volume element attached to the lattice site
Transition rates at each time instant and lattice sitg i - independent
random variables

@ Average of the expectation value over the distribution of random saurc

H(e/u s, iVag i At—p ,a,iéu,iaa,iAt>

i
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Random sources and sinks: Doi approach

@ Cumulant expansion:

1 1
(&A= 14 bALE; + éEz(bAt)2 + éEs(bAt)3 4.

ebAtEH—% (E2—E2) (bAt)2+ L (Es—3E1E>+ES ) (DAL)3+---

b: Vaor —-aa

11/30



Random sources and sinks: Doi approach

@ Cumulant expansion:

1 1
(&A= 14 bALE; + éEz(bAt)2 + éEs(bAt)3 4.

ebAtEH—% (E2—E2) (bAt)2+ L (Es—3E1E>+ES ) (DAL)3+---

b: Vaor —-aa

H(e“%avivaav‘AS _ ezaZi[AtEHVéla,iJr%(E+27E3_1)(Véa7iAt)2]
i

e i [§(Es—3E11E2+E% ) (VA iAl)3+- |
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o First term of the exponential
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Random sources and sinks: Doi approach

@ Continuum limit: functiora, ; — field 4" (t,x),V — 0= a,,i/V — field
»(t,x)

@ Sums:a, i, time elementAt , volume elemenf\V — time - spatial
integrals dt [ dx

o First term of the exponential

> ) AtEVa. — Eq / dt / dx ot (t, x)
«@ i

@ Cumulants of second and higher order: continuum limit
Assumption: the simplest nontrivial distribution fex. -only the variance
term has a finite limit, wheht — 0 andV — 0O

(Ey2 —E2;)VAt -0, At—0,V =0,
(Eys — 3E11E+2 + E3) (VAY)2 50, At—0,V —0
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Random sources and sinks: functional formulation

@ Result: action with contribution of the average owuer

S, = /dt/dx {E+1w+(t,x) - %mr [¢+(t,><)]2}

Contribution fromu._

s - / dit / dx {—E_lw(t,x)w(t,x) + %a_ [¢+(t,x)¢(t,x)]2} .
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Random sources and sinks: functional formulation

o Feature: random sources and sinks do not conserve the numbeticepa
in the system
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Random sources and sinks: functional formulation

o Feature: random sources and sinks do not conserve the numbeticepa
in the system

o Correction: addition of new term;.n = master equation

dP(t, n)
dt

o Liouville operator:

= pV[P(t,n — 1) = P(t,n)]+p14 [(n— DP(t,n — 1) — nP(t, n)]

Lp(at,8) = s (a7 —1)ata

@ Corresponding part of action:

S = [t fox {Buan (6 4 1wt o0t (00 + 1702)
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Scaling analysis

] E+]_ =04 = 0, E1+1 = E_]_:
S = [t [ox {Emw*zw + 30 (70) + gor R (0 + 1)2w2}
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o Starting point: time derivative term in the dynamic action - dimensionle

S= —/dt/dx¢+(t,x)8tw(t,x) +...

total scaling dimension of the number-density operdfor + d,, = d

@ various possibilities: Scaling dimensionof dy+ = 0= dimension of)
dy = d = operator monomials in the second and third terms in action -
same scaling dimension - larger than thatpo“tzz/z
= are IR irrelevants- should be discarded in the asymptotic analysis

@ Scaling dimensions of both fields are positizeabove operator
monomials contain "excessive” field facter IR irrelevant=- should be
discarded too
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@ IR relevant dynamic action of random sources and sinks reduces to th
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Scaling analysis

@ IR relevant dynamic action of random sources and sinks reduces to th
single term

Slgcz/dt/dXEl_i_lerzlﬁ, d¢+ =0V d¢+ >0, dw >0

o dy = 0= d,+ = d= (positive)= terms with "excessive” powers af" -
IR irrelevant=- starting point for RG analysis is the source and sink act

e = / dt / dx {Emwzw - % (0- +014) (WW} , dy=0
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Annihilation reactionA + A — () with random sources anc

@ Dynamic action of the diffusion-limited annihilation reactién+ A — ()
S = —/ dt/dx {wc‘w — Dot V2
0

+ Do [2¢7 + ()7 ¢2}+n0 / dx T (x, 0)
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Annihilation reactionA + A — () with random sources anc

@ Scaling analysisd,,+ = 0 = scaling dimensions of nonlinear terms in
action are equal
Source-sink part of action - linear in the fieldinteraction terms of last
action are quadratic ith = IR irrelevant=- source-sink part of action is
IR relevant

Spi = — /0 Tt / dx {Watzp — DotV — E1+1¢+2w}
+ no/dXzﬁ(x,O)
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Annihilation reactionA + A — () with random sources anc

@ Scaling analysisd,,+ = 0 = scaling dimensions of nonlinear terms in
action are equal
Source-sink part of action - linear in the fieldinteraction terms of last
action are quadratic ith = IR irrelevant=- source-sink part of action is
IR relevant

Sk = [ ot fax {uraw - Do VR - Evav )
0
+ no /dmﬁ(x, 0)
@ However, this dynamic action does not bring about any graphs with clc

loops of the density propagator and thus no density fluctuation effects
the asymptotic behaviour are anticipated.
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Annihilation reactionA + A — () with random sources anc

o Cased,+ > 0,dy > 0 the fourth-order term in action becomes irreleva
Either of the remaining third-order terms alone does not generate loop
therefore density fluctuation effects are brought about only, whén bo
fields have the same scaling dimensihn = dy, = d/2.
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Annihilation reactionA + A — () with random sources anc

o Cased,+ > 0,dy > 0 the fourth-order term in action becomes irreleva
Either of the remaining third-order terms alone does not generate loop
therefore density fluctuation effects are brought about only, whén bo
fields have the same scaling dimensihn = dy, = d/2.

@ IR relevant dynamic actios> dynamic action of the Gribov process, als
known as the Reggeon model, subject to random advection
V.N. Gribov, Zh. Eksp. Teor. Fi%3, 654 (1967).

Sre = —/0 dt/dX {Tﬁaﬂﬁ — Doy V2

+ 2XoDoy T — E1+1111+2¢)}+n0 /dX YT (x,0)
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Annihilation reactionA + A — () with random sources anc

o Cased, = 0 the fourth-order term in action becomes irrelevant as well
due to the positive dimension of the field” A both terms of the
source-sink action are also irrelevant
= IR relevant dynamic action

Sps = — / it / dx {w*aﬂ/} — DotV + 2AoDow+¢2}
0
+ no /dXW(X, 0)
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o Cased, = 0 the fourth-order term in action becomes irrelevant as well
due to the positive dimension of the field” A both terms of the
source-sink action are also irrelevant
= IR relevant dynamic action

Sps = — / it / dx {w*aﬂ/} — DotV + 2AoDow+¢2}
0
+ no /dXW(X, 0)

@ This dynamic action does not give rise to any density-fluctuation loops
thus does not predict any decay anomaly due to them.

@ Lessonif the sources and sinks are chosen such that they conserve tr
mean number of particles in the system, then the anomalous scaling
behaviour in the system is that of the Gribov process, if any.
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Annihilation reactionA + A — () with random sources anc

@ Case: plain source term is not vanishedhere is the possibility that the
system does not tend to the absorbing empty state but to an active sta
with a finite concentration of particles.
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@ Case: plain source term is not vanishedhere is the possibility that the
system does not tend to the absorbing empty state but to an active sta
with a finite concentration of particles.

@ Starting point: dynamic action with all the terms quoted above

S— /0 t  ox {—W&w + Dot VY
~XoDo [20 + (%)) WP Bt 4 2oy ()P Erpat (67 +1)
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Annihilation reactionA + A — () with random sources anc

@ Case: plain source term is not vanishedhere is the possibility that the
system does not tend to the absorbing empty state but to an active sta
with a finite concentration of particles.

@ Starting point: dynamic action with all the terms quoted above

S— /0 t  ox {—W&w + Dot VY
~XoDo [20 + (%)) WP Bt 4 2oy ()P Erpat (67 +1)

+%al+w+2 (v* + 1)2w2—E_1w+w+%a— (ve)? }+no / dx v * (x, 0)

@ Stationarity equation brought about by this dynamic action for the field
O — DoV2h = —2XoDoth® + Es1 + Er1tp — E_19)
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Annihilation reactionA + A — () with random sources anc

@ Action expanded around the stationary valbe,; = E_1):
S= / dt/dx{—dz*&tq/} + Dot V21) — v/8\/E 1 0oDotr o
0

—E E_1\/Ei1 oD E E 10—
+< +1 1VE+1ADo | Eraony | Eo +0+>1/1+2

2 \/EAODO 4)\oDg 4)\oDg 2
n Epiop 9t n Eiio1 9t N V2 \/Ef1 ADoors ¥
20D 4)\0Dg XoDo
VE+1AoDoo1y  y/Et1AoDoo-— 2
+|E_1 — V2 /Ei1hoDo + Y + +
( 1 +1A0Do V2 Do V2 7Da YT
VE+1 AoDo o1y ¢ 2 o1+ O- 2 2
+ —2 Do T4 ( —AoDo + = + — ) T
72 Do oDo ™ ( oDo + — Z)wa
+4,,2
t o1 ¢+3¢2+ W} + no/dXd)"’(X, 0).
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Annihilation reactionA + A — () with random sources anc

o Critical limit E+; — 0= variances vanishes (expectation value of a
nonnegative random quantity, ) = Vicinity of the critical point - only the
leadingE; ando . terms

S— / Tt / {7 ok -+ Do V20 — VBy/Er1hgDo
0

E1vEra o4\ 42 Epon ¢ Eppogpt? 42
—_— + — E_
* ( J2Do 2 T T Do 4aD, oV Y
V2 \/E;1doDoow vy /EiidoDoors vty 2
+ + — 2 oDo ™Y
)\ODO \/éx\oDo

+4,1,2
+(~AoDo + 4 "7‘) b2 o, w%%bﬁ 4 }+no / dx o
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Annihilation reactionA + A — () with random sources anc

o Dimensional analysis: Nonlinear parts without the critical paramé&ieygs
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o Dimensional analysis: Nonlinear parts without the critical paramé&ieygs
ando - previous arguments hold

@ terms having powers of these parameters as coefficients: their positive
scaling dimensions must be taken into account
canonical dimension d&_ ; is four (from quadratic-field part of the actior
canonical dimension af ;. remains a free parameter

o Case withd,,+ = 0O: the third and fourth powers of and terms
independent of or first order im) are irrelevant compared with terms
x w+2 due to the coefficients proportional Eq_; or its square root
Nonlinear imy) terms are irrelevant against the linear terms due to posit
dimension ofy
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@ IR effective action
S = / “t / dx {—zp*atw + Dot V2
_ 2\[\/E+1)\0D01/1+¢—|— ( \/;)\7[) ) ¢+2
+ E_11/1+2¢} + 1o / dx ¥t (x,0)
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@ IR effective action
S = / “t / dx {—zp*atw + Dot V2
_ 2\[\/E+1)\0D01/1+¢—|— ( \/;)\7[) ) ¢+2
+ E_11/1+2¢} + 1o / dx ¥t (x,0)

@ Conclusion: remaining interaction terms do not induce loops (althougt
here we have a nontrivial correlation function of the field
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o Case withd,,+ > 0 andd,, > 0: higher powers than the leading correctic
to the quadratic-field action of both fields are irrelevant
This argument leaves us with the dynamic action

S= / Tt / dx{—w+6tw + Doy V%) — V/81/E1MoDotp T
0

n ( E 1vE

Tt ) yt? +2,_ +,0,2 "
N )w +E_ 197 Y —2XoDoy)" ¥ }+no/dx¢ (x,0)
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o Case withd,,+ > 0 andd,, > 0: higher powers than the leading correctic
to the quadratic-field action of both fields are irrelevant
This argument leaves us with the dynamic action

S= / Tt / dx{—watw + Doy V%) — V/81/E1MoDotp T
0

EvEir | o4 42 2, s N
+< Jabe 2 )w +E_ 197 Y —2XoDoy)" ¥ }+no/dx¢ (x,0)

o Result: Interaction term-2 \gDg ¢/ 1)? generates loops alone due to the
presence of the correlation function of the figld= two effective actions
with nontrivial fluctuation contributions are possible
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@ a)d,+ > dy: to keep the correlation function of the fiefdfor the loops,
the variancer . must have a dimension less than that dim, /@& 1
Effective action

S— / Tt / dx{—z/ﬁatzp + Doth V29 — V/8y/E 1 \oDoty T
0

+ % WrE - ZAoDowﬂbz} +no /dxdﬁ(x, 0)
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@ a)d,+ > dy: to keep the correlation function of the fiefdfor the loops,
the variancer . must have a dimension less than that dim, /@& 1
Effective action

s [ dt [ax{ v+ 0 + Dov V20 - VBYErrhaDos
0
+ % WrE - ZAoDowﬂbz} +no /dxdﬁ(x, 0)

@ Model is logarithmic at dimensiod = 6
apart from the coefficient of the zﬁz the action is that of critical
dynamics of thex® model
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@ b)d,+ = dy = d/2: Both third-order terms are relevant
dimension ofr - larger than that of/E ;1 = o can be omitted
Effective dynamic action

S= /Ooodt / dx{ —y* ok + Dourt V2 — VBY/E 1oDoy ¢

E 1vE«

+ I E Py - 20D0u 02} + o [kt (x0)
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@ b)d,+ = dy = d/2: Both third-order terms are relevant
dimension ofr - larger than that of/E ;1 = o can be omitted
Effective dynamic action

S= /oodt/dx —h 0 + Doty T V29 — V/8y/E 1 \oDoty "¢

E1 +2 +2 +(
+¢Tv()[>¢ FE 402 — 220D0 vt +n/dxw (x,0)

@ c) dimension ot - smaller than that o{/E 1 = "mass term”can be
omitted
Effective dynamic action

S— /0 Tt / {0 0 + Dot V2

+ % 0 E w0 - 20aD0u 07} 4 o [kt (x,0
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@ Dynamic actions describing the Gribov process with a random source
include terms independent of the active agent density, which are not
present in the Langevin approach!!!
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@ Dynamic actions describing the Gribov process with a random source
include terms independent of the active agent density, which are not
present in the Langevin approach!!!

@ Indeed, the fact that the rate of change of the density due to the rando
sink is proportional to a power of density is a natural assumption.
The assumption that the rate of change of the density due to the randc
source is proportional to a power of density is not natural.
Therefore, the dynamic action in cases b) and c) possibly predicts alct
behaviour of the Gribov process different from that discussed in the
literature.
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Conclusions

@ we have investigated possible effects of sources and sinks in reaction
kinetics. They have been introduced directly in the master equation.
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@ we have investigated possible effects of sources and sinks in reaction
kinetics. They have been introduced directly in the master equation.

@ On the basis of dimensional analysis we constructed effective actions,
which are a starting point for RG analysis of critical behaviour of these
systems.

Most of the dynamic effective actions obtained are trivial from the pdin
view of critical behaviour of the model, because infrared relevant
interaction terms do not generate loops diagrams.

@ Non-trivial cases lead to the action describing Gribov process. Hayievi
this manner we obtain a source term in dynamic action without agent
density. This is cardinally different from that generated by Langevin
equation.

@ For the study of influence of density fluctuations on annihilation reactic
A+ A — (0, which are relevant only for dimension two or less, random
sources and sinks are unimportant.
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