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Formulation of the problem
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rateλ
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Formulation of the problem

reaction-diffusion model - single species of particlesA do random walk in
space and, whenever they meet, undergo the reactionA+ A → ∅ (inert) at
rateλ

Rate equation for mean densityn(t, x):

∂n
∂t

= D∇2n− 2λn(2)

n(2) - pair correlation (probability to find two particles in the same place)

n(2) ≈ n2 - reaction-limited case -τdif << τreact

if τdif >> τreact - diffusion limited case⇒ fluctuation of density must be
taken into account
attempt to do it by adding a noise term as in Langevin approach:

∂n
∂t

= D∇2n− 2λn2 + ζ

this simple-minded approach is dubious

2 / 30



Formulation of the problem

Generally we have a typical many-body problem, where particles can be
created or annihilated and the total number of particles is not conserved.

3 / 30



Formulation of the problem

Generally we have a typical many-body problem, where particles can be
created or annihilated and the total number of particles is not conserved.
Suitable approach: methods of kinetic theory

3 / 30



Formulation of the problem

Generally we have a typical many-body problem, where particles can be
created or annihilated and the total number of particles is not conserved.
Suitable approach: methods of kinetic theory
Master equation: time evolution of the probabilityP(α) of finding a system
in a microstateα

dP(α)
dt

=
∑

β

Rβ→αP(β)−
∑

β

Rα→βP(α)

Transition ratesRdetermined in a specific model

3 / 30



Formulation of the problem

Generally we have a typical many-body problem, where particles can be
created or annihilated and the total number of particles is not conserved.
Suitable approach: methods of kinetic theory
Master equation: time evolution of the probabilityP(α) of finding a system
in a microstateα

dP(α)
dt

=
∑

β

Rβ→αP(β)−
∑

β

Rα→βP(α)

Transition ratesRdetermined in a specific model
”Second quantization” formalism: allows to rewrite the problem in the
language of creation-annihilation operators in Fock space, to use QFT and
finally formulate it as a functional integral with effective dynamical action

3 / 30



Formulation of the problem

Generally we have a typical many-body problem, where particles can be
created or annihilated and the total number of particles is not conserved.
Suitable approach: methods of kinetic theory
Master equation: time evolution of the probabilityP(α) of finding a system
in a microstateα

dP(α)
dt

=
∑

β

Rβ→αP(β)−
∑

β

Rα→βP(α)

Transition ratesRdetermined in a specific model
”Second quantization” formalism: allows to rewrite the problem in the
language of creation-annihilation operators in Fock space, to use QFT and
finally formulate it as a functional integral with effective dynamical action
Dynamic action of the diffusion-limited annihilation reactionA+ A → ∅

S1 = −
∫

∞

0
dt
∫

dx
{

ψ+∂tψ − D0ψ
+∇2ψ

+ λ0D0
[

2ψ+ + (ψ+)2]ψ2
}

+n0

∫

dxψ+(x, 0)

ψ, ψ+ - complex-conjugate scalar fields
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Formulation of the problem

Our primary aim: to investigate influence of random drift field (turbulent
fluctuations, thermal fluctuations) on dynamics of annihilation reaction, to
find universal critical regimes by RG approach and decay law for average
density
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Formulation of the problem

Our primary aim: to investigate influence of random drift field (turbulent
fluctuations, thermal fluctuations) on dynamics of annihilation reaction, to
find universal critical regimes by RG approach and decay law for average
density

we have carried out the analysis in two-loop approximation (calculated all
RG functions, fixed points and its stability) for cases when statistics of
velocity field is prescribed –like in rapid change Kraichnan model – or it is
determined by stochastic Navier-Stokes equation. Details of our analysis
and calculation will be presented on Thursday by Tomas Lucivjansky
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Random sources and sinks in the master equation

In my presentation I would like to analyse a more general situation when
we have possibility to eliminate particles due to the existence of random
sink or to produce particles due to contact with random source.
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In my presentation I would like to analyse a more general situation when
we have possibility to eliminate particles due to the existence of random
sink or to produce particles due to contact with random source.

Introduction of random sink and source: Langevin approach is not suitable
for such processes⇒ attempt to introduce them directly to the master
equation

no unique way to introduce random sources in the master equation
corresponding to the random noise of the mean-field (Langevin)
description.

the simplest choice: to model the sink by reactionA → X and source by
reactionY → A, whereX andY stand for particle baths of the sink and the
source
N. G. van Kampen, Stochastic processes in physics and chemistry
(North-Holland, Amsterdam, 1984)
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Random sources and sinks in the master equation

Master equation with inclusion of random sourses and sinks (homogeneous
case)

dP(t, n)
dt

= µ+V [P(t, n− 1)− P(t, n)]

+ µ− [(n+ 1)P(t, n+ 1)− nP(t, n)] . . .

P(t, n) - probability to findn particles at the time instantt in the system
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Master equation with inclusion of random sourses and sinks (homogeneous
case)

dP(t, n)
dt

= µ+V [P(t, n− 1)− P(t, n)]

+ µ− [(n+ 1)P(t, n+ 1)− nP(t, n)] . . .

P(t, n) - probability to findn particles at the time instantt in the system

µ+ andµ− - reaction constants of the creation and annihilation reactions

annihilation process: transition rate - proportional to the particle numbern

creation process: transition rate - proportional to the volume of
homogeneous systemV

reaction-rate equation

d〈n〉
dt

= µ+V − µ−〈n〉+ . . .

〈n〉 - mean particle number
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Random sources and sinks: Doi approach

Doi approach
M. Doi, J. Phys. A: Math. Gen.9 (1976) 1465, 1479
see alsoJ.Cardy, Field Theory and Nonequilibrium Statistical Mechanics,
Troisieme cycle de la Physique en Suisse Romande, Anné acad́emique
1998-1999, semestre d’ét́e
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Basic steps
P(t, n) - probabilities to findn particles at the time instantt on a fixed
lattice site
description of spatial dependence: by labeling the particle number by the
coordinates of the lattice and introducing necessary sums and products
over the lattice sites
Basis vectors of the Fock space: Usual annihilation and creation operators
â, â+ and the vacuum vector| 0〉:

â| 0〉 = 0 , â+| n〉 = | n+ 1〉
[ â, â+] = ââ+ − â+â = I

normalization:〈 n |m〉 = n!δnm

State vector: contains all information about the system:

|Φ 〉 =
∞
∑

n=0

P(t, n)| n〉

8 / 30



Random sources and sinks: Doi approach

Master equations for a birth-death process⇒
Single evolution equation for the state vector:
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Random sources and sinks: Doi approach

Master equations for a birth-death process⇒
Single evolution equation for the state vector:

d|Φ 〉
dt

= L̂(â+, â)|Φ 〉
Liouville operator

L̂g(â
+, â) = µ+V

(

â+ − I
)

+ µ−
(

I − â+
)

â ,

I - identity operator
Expectation value of any functionF(n) of random particle number:

〈F(t)〉 =
∞
∑

n=0

F(n)P(t, n)

Form of the functional integral over the functions of timeã anda:

〈F(t)〉 =
∫

DãDa FN[(ã(t) + 1)a(t)]eS1 ,

FN(ãa) - normal form of the operatorF(â+â)
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Random sources and sinks: Doi approach

S1 - dynamic action

S1(ã, a) =

∞
∫

0

dt [−ã(t)∂ta(t) + µ+Vã(t)− µ−ã(t)a(t)] . . .
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S1 - dynamic action

S1(ã, a) =

∞
∫

0

dt [−ã(t)∂ta(t) + µ+Vã(t)− µ−ã(t)a(t)] . . .

Assumption: transition ratesµ± - random functions uncorrelated in time
Their probability distribution: moments〈µn

±〉 = E± ,n

Spatially inhomogeneous system: introduction of a lattice subscript as the
spatial argument
volumeV: volume element attached to the lattice site
Transition rates at each time instant and lattice siteµ±α,i - independent
random variables

Average of the expectation value over the distribution of random sources:
∏

α,i

〈eµ+ ,α,iVãα,i∆t−µ
− ,α,i ãα,iaα,i∆t〉
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Random sources and sinks: Doi approach

Cumulant expansion:

〈eµb∆t〉 = 1+ b∆tE1 +
1
2

E2(b∆t)2 +
1
6

E3(b∆t)3 + · · ·

= eb∆tE1+
1
2(E2−E2

1)(b∆t)2+ 1
6(E3−3E1E2+E3

1)(b∆t)3+···

b: Vã or−ãa
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Cumulant expansion:

〈eµb∆t〉 = 1+ b∆tE1 +
1
2

E2(b∆t)2 +
1
6

E3(b∆t)3 + · · ·

= eb∆tE1+
1
2(E2−E2

1)(b∆t)2+ 1
6(E3−3E1E2+E3

1)(b∆t)3+···

b: Vã or−ãa

∏

α,i

〈eµ+ ,α,iVãα,i∆t〉 = e
∑

α

∑
i[∆tE+1Vãα,i+

1
2(E+2−E2

+1)(Vãα,i∆t)2]

e
∑

α

∑
i[

1
6(E+3−3E+1E+2+E3

+1)(Vãα,i∆t)3+··· ]
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Random sources and sinks: Doi approach

Continuum limit: functioñaα,i → fieldψ+(t, x), V → 0⇒ aα,i/V → field
ψ(t, x)
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Random sources and sinks: Doi approach

Continuum limit: functioñaα,i → fieldψ+(t, x), V → 0⇒ aα,i/V → field
ψ(t, x)

Sums:α, i, time element∆t , volume element∆V → time - spatial
integrals

∫

dt
∫

dx

First term of the exponential

∑

α

∑

i

∆tE+1Vãα,i → E+1

∫

dt
∫

dxψ+(t, x)

Cumulants of second and higher order: continuum limit
Assumption: the simplest nontrivial distribution forµ± -only the variance
term has a finite limit, when∆t → 0 andV → 0

(

E+2 − E2
+1

)

V∆t → σ+ , ∆t → 0 , V → 0 ,
(

E+3 − 3E+1E+2 + E3
+1

)

(V∆t)2 → 0 , ∆t → 0 , V → 0
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Random sources and sinks: functional formulation

Result: action with contribution of the average overµ+

S+ =

∫

dt
∫

dx
{

E+1ψ
+(t, x) +

1
2
σ+
[

ψ+(t, x)
]2
}

Contribution fromµ−

S− =

∫

dt
∫

dx
{

−E−1ψ
+(t, x)ψ(t, x) +

1
2
σ−
[

ψ+(t, x)ψ(t, x)
]2
}

.
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Random sources and sinks: functional formulation

Feature: random sources and sinks do not conserve the number of particles
in the system
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Correction: addition of new termµ1+n⇒ master equation

dP(t, n)
dt

= µ+V [P(t, n− 1)− P(t, n)]+µ1+ [(n− 1)P(t, n− 1)− nP(t, n)] .

Liouville operator:

L̂g2(â
+, â) = µ1+

(

â+ − I
)

â+â

Corresponding part of action:

S1+ =

∫

dt
∫

dx
{

E1+1ψ
+
(

ψ+ + 1
)

ψ +
1
2
σ1+ψ

+2 (
ψ+ + 1

)2
ψ2
}
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Scaling analysis

E+1 = σ+ = 0, E1+1 = E−1:

Sgc =

∫

dt
∫

dx
{

E1+1ψ
+2
ψ +

1
2
σ−
(

ψ+ψ
)2

+
1
2
σ1+ψ

+2 (
ψ+ + 1

)2
ψ2
}

conserves the average number of particles
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S= −
∫

dt
∫

dxψ+(t, x)∂tψ(t, x) + . . .

total scaling dimension of the number-density operatordψ+ + dψ = d
various possibilities: Scaling dimension ofψ+ dψ+ = 0⇒ dimension ofψ
dψ = d ⇒ operator monomials in the second and third terms in action - the

same scaling dimension - larger than that ofψ+2
ψ

⇒ are IR irrelevant⇒ should be discarded in the asymptotic analysis
Scaling dimensions of both fields are positive⇒ above operator
monomials contain ”excessive” field factor⇒ IR irrelevant⇒ should be
discarded too
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Scaling analysis

IR relevant dynamic action of random sources and sinks reduces to the
single term

S′gc =

∫

dt
∫

dx E1+1ψ
+2
ψ , dψ+ = 0 ∨ dψ+ > 0 , dψ > 0
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Scaling analysis

IR relevant dynamic action of random sources and sinks reduces to the
single term

S′gc =

∫

dt
∫

dx E1+1ψ
+2
ψ , dψ+ = 0 ∨ dψ+ > 0 , dψ > 0

dψ = 0⇒ dψ+ = d ⇒ (positive)⇒ terms with ”excessive” powers ofψ+ -
IR irrelevant⇒ starting point for RG analysis is the source and sink action

S′′gc =

∫

dt
∫

dx
{

E1+1ψ
+2
ψ +

1
2
(σ− + σ1+)

(

ψ+ψ
)2
}

, dψ = 0
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Annihilation reactionA+ A → ∅ with random sources and
sinks

Dynamic action of the diffusion-limited annihilation reactionA+ A → ∅

S1 = −
∫

∞

0
dt
∫

dx
{

ψ+∂tψ − D0ψ
+∇2ψ

+ λ0D0
[

2ψ+ + (ψ+)2]ψ2
}

+n0

∫

dxψ+(x, 0)
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Annihilation reactionA+ A → ∅ with random sources and
sinks

Scaling analysis:dψ+ = 0⇒ scaling dimensions of nonlinear terms in
action are equal
Source-sink part of action - linear in the fieldψ interaction terms of last
action are quadratic inψ⇒ IR irrelevant⇒ source-sink part of action is
IR relevant

SIR1 = −
∫

∞

0
dt
∫

dx
{

ψ+∂tψ − D0ψ
+∇2ψ − E1+1ψ

+2
ψ
}

+ n0

∫

dxψ+(x, 0)
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Annihilation reactionA+ A → ∅ with random sources and
sinks

Scaling analysis:dψ+ = 0⇒ scaling dimensions of nonlinear terms in
action are equal
Source-sink part of action - linear in the fieldψ interaction terms of last
action are quadratic inψ⇒ IR irrelevant⇒ source-sink part of action is
IR relevant

SIR1 = −
∫

∞

0
dt
∫

dx
{

ψ+∂tψ − D0ψ
+∇2ψ − E1+1ψ

+2
ψ
}

+ n0

∫

dxψ+(x, 0)

However, this dynamic action does not bring about any graphs with closed
loops of the density propagator and thus no density fluctuation effects on
the asymptotic behaviour are anticipated.
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Annihilation reactionA+ A → ∅ with random sources and
sinks

Case:dψ+ > 0, dψ > 0 the fourth-order term in action becomes irrelevant
Either of the remaining third-order terms alone does not generate loops,
therefore density fluctuation effects are brought about only, when both
fields have the same scaling dimensiondψ+ = dψ = d/2.

19 / 30



Annihilation reactionA+ A → ∅ with random sources and
sinks

Case:dψ+ > 0, dψ > 0 the fourth-order term in action becomes irrelevant
Either of the remaining third-order terms alone does not generate loops,
therefore density fluctuation effects are brought about only, when both
fields have the same scaling dimensiondψ+ = dψ = d/2.

IR relevant dynamic action⇔ dynamic action of the Gribov process, also
known as the Reggeon model, subject to random advection
V.N. Gribov, Zh. Eksp. Teor. Fiz.53, 654 (1967).

SIR2 = −
∫

∞

0
dt
∫

dx
{

ψ+∂tψ − D0ψ
+∇2ψ

+ 2λ0D0ψ
+ψ2 − E1+1ψ

+2
ψ

}

+n0

∫

dxψ+(x, 0)
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Annihilation reactionA+ A → ∅ with random sources and
sinks

Case:dψ = 0 the fourth-order term in action becomes irrelevant as well
due to the positive dimension of the fieldψ+ ∧ both terms of the
source-sink action are also irrelevant
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Case:dψ = 0 the fourth-order term in action becomes irrelevant as well
due to the positive dimension of the fieldψ+ ∧ both terms of the
source-sink action are also irrelevant
⇒ IR relevant dynamic action

SIR3 = −
∫

∞

0
dt
∫

dx
{

ψ+∂tψ − D0ψ
+∇2ψ + 2λ0D0ψ

+ψ2
}

+ n0

∫

dxψ+(x, 0)

This dynamic action does not give rise to any density-fluctuation loops and
thus does not predict any decay anomaly due to them.

Lesson:If the sources and sinks are chosen such that they conserve the
mean number of particles in the system, then the anomalous scaling
behaviour in the system is that of the Gribov process, if any.
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Annihilation reactionA+ A → ∅ with random sources and
sinks

Case: plain source term is not vanished⇒ there is the possibility that the
system does not tend to the absorbing empty state but to an active state
with a finite concentration of particles.
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Case: plain source term is not vanished⇒ there is the possibility that the
system does not tend to the absorbing empty state but to an active state
with a finite concentration of particles.
Starting point: dynamic action with all the terms quoted above

S=

∫

∞

0
dt
∫

dx

{

−ψ+∂tψ + D0ψ
+∇2ψ

−λ0D0

[

2ψ+ +
(

ψ+
)2
]

ψ2+E+1ψ
++

1
2
σ+
(

ψ+
)2
+E1+1ψ

+
(

ψ+ + 1
)

ψ

+
1
2
σ1+ψ

+2 (
ψ+ + 1

)2
ψ2−E−1ψ

+ψ+
1
2
σ−
(

ψ+ψ
)2

}

+n0

∫

dxψ+(x, 0)
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system does not tend to the absorbing empty state but to an active state
with a finite concentration of particles.
Starting point: dynamic action with all the terms quoted above

S=

∫

∞

0
dt
∫

dx

{

−ψ+∂tψ + D0ψ
+∇2ψ

−λ0D0

[

2ψ+ +
(

ψ+
)2
]

ψ2+E+1ψ
++

1
2
σ+
(

ψ+
)2
+E1+1ψ

+
(

ψ+ + 1
)

ψ

+
1
2
σ1+ψ

+2 (
ψ+ + 1

)2
ψ2−E−1ψ

+ψ+
1
2
σ−
(

ψ+ψ
)2

}

+n0

∫

dxψ+(x, 0)

Stationarity equation brought about by this dynamic action for the fieldψ:

∂tψ − D0∇2ψ = −2λ0D0ψ
2 + E+1 + E1+1ψ − E−1ψ
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Annihilation reactionA+ A → ∅ with random sources and
sinks

Action expanded around the stationary value (E1+1 = E−1):

S=

∫

∞

0
dt
∫

dx
{

−ψ+∂tψ + D0ψ
+∇2ψ −

√
8
√

E+1λ0D0ψ
+ψ

+

(

−E+1

2
+

E−1
√

E+1λ0D0√
2λ0D0

+
E+1σ1+

4λ0D0
+

E+1σ−
4λ0D0

+
σ+
2

)

ψ+2

+
E+1σ1+ψ

+3

2λ0D0
+

E+1σ1+ψ
+4

4λ0D0
+

√
2
√

E+1λ0D0σ1+ ψ
+3
ψ

λ0D0

+

(

E−1 −
√

2
√

E+1λ0D0 +

√

E+1λ0D0σ1+√
2λ0D0

+

√

E+1λ0D0σ−√
2λ0D0

)

ψ+2
ψ

+

√

E+1λ0D0σ1+ ψ
+4
ψ√

2λ0D0
−2λ0D0ψ

+ψ2+
(

−λ0D0 +
σ1+

2
+
σ−
2

)

ψ+2
ψ2

+ σ1+ ψ
+3
ψ2 +

σ1+ ψ
+4
ψ2

2

}

+ n0

∫

dxψ+(x, 0) .
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Annihilation reactionA+ A → ∅ with random sources and
sinks

Critical limit E+1 → 0⇒ varianceσ+ vanishes (expectation value of a
nonnegative random quantityµ+) ⇒ Vicinity of the critical point - only the
leadingE+1 andσ+ terms

S=

∫

∞

0
dt
∫

dx
{

−ψ+∂tψ + D0ψ
+∇2ψ −

√
8
√

E+1λ0D0ψ
+ψ

+

(

E−1
√

E+1√
2λ0D0

+
σ+
2

)

ψ+2
+

E+1σ1+ ψ
+3

2λ0D0
+

E+1σ1+ ψ
+4

4λ0D0
+E−1ψ

+2
ψ

+

√
2
√

E+1λ0D0σ1+ ψ
+3
ψ

λ0D0
+

√

E+1λ0D0σ1+ ψ
+4
ψ√

2λ0D0
− 2λ0D0ψ

+ψ2

+
(

−λ0D0 +
σ1+

2
+
σ−
2

)

ψ+2
ψ2+σ1+ ψ

+3
ψ2+

σ1+ ψ
+4
ψ2

2

}

+n0

∫

dxψ+
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Annihilation reactionA+ A → ∅ with random sources and
sinks

Dimensional analysis: Nonlinear parts without the critical parametersE+1

andσ+ - previous arguments hold
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Dimensional analysis: Nonlinear parts without the critical parametersE+1

andσ+ - previous arguments hold

terms having powers of these parameters as coefficients: their positive
scaling dimensions must be taken into account
canonical dimension ofE+1 is four (from quadratic-field part of the action)
canonical dimension ofσ+ remains a free parameter

Case withdψ+ = 0: the third and fourth powers ofψ+ and terms
independent ofψ or first order inψ are irrelevant compared with terms
∝ ψ+2 due to the coefficients proportional toE+1 or its square root
Nonlinear inψ terms are irrelevant against the linear terms due to positive
dimension ofψ
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Annihilation reactionA+ A → ∅ with random sources and
sinks

IR effective action

S =

∫

∞

0
dt
∫

dx
{

−ψ+∂tψ + D0ψ
+∇2ψ

− 2
√

2
√

E+1λ0D0ψ
+ψ +

(

E−1
√

E+1√
2λ0D0

+
σ+
2

)

ψ+2

+ E−1ψ
+2
ψ
}

+ n0

∫

dxψ+(x, 0)
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Annihilation reactionA+ A → ∅ with random sources and
sinks

IR effective action

S =

∫

∞

0
dt
∫

dx
{

−ψ+∂tψ + D0ψ
+∇2ψ

− 2
√

2
√

E+1λ0D0ψ
+ψ +

(

E−1
√

E+1√
2λ0D0

+
σ+
2

)

ψ+2

+ E−1ψ
+2
ψ
}

+ n0

∫

dxψ+(x, 0)

Conclusion: remaining interaction terms do not induce loops (although
here we have a nontrivial correlation function of the fieldψ)
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Annihilation reactionA+ A → ∅ with random sources and
sinks

Case withdψ+ > 0 anddψ > 0: higher powers than the leading corrections
to the quadratic-field action of both fields are irrelevant
This argument leaves us with the dynamic action

S=

∫

∞

0
dt
∫

dx
{

−ψ+∂tψ + D0ψ
+∇2ψ −

√
8
√

E+1λ0D0ψ
+ψ

+

(

E−1
√

E+1√
2λ0D0

+
σ+
2

)

ψ+2
+E−1ψ

+2
ψ−2λ0D0ψ

+ψ2
}

+n0

∫

dxψ+(x, 0)
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to the quadratic-field action of both fields are irrelevant
This argument leaves us with the dynamic action

S=

∫

∞

0
dt
∫

dx
{

−ψ+∂tψ + D0ψ
+∇2ψ −

√
8
√

E+1λ0D0ψ
+ψ

+

(

E−1
√

E+1√
2λ0D0

+
σ+
2

)

ψ+2
+E−1ψ

+2
ψ−2λ0D0ψ

+ψ2
}

+n0

∫

dxψ+(x, 0)

Result: Interaction term−2λ0D0ψ
+ψ2 generates loops alone due to the

presence of the correlation function of the fieldψ⇒ two effective actions
with nontrivial fluctuation contributions are possible
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Annihilation reactionA+ A → ∅ with random sources and
sinks

a)dψ+ > dψ: to keep the correlation function of the fieldψ for the loops,
the varianceσ+ must have a dimension less than that dim. of

√
E+1

Effective action

S=

∫

∞

0
dt
∫

dx
{

−ψ+∂tψ + D0ψ
+∇2ψ −

√
8
√

E+1λ0D0ψ
+ψ

+
σ+
2
ψ+2 − 2λ0D0ψ

+ψ2
}

+ n0

∫

dxψ+(x, 0)
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a)dψ+ > dψ: to keep the correlation function of the fieldψ for the loops,
the varianceσ+ must have a dimension less than that dim. of

√
E+1
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S=

∫
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0
dt
∫

dx
{

−ψ+∂tψ + D0ψ
+∇2ψ −

√
8
√

E+1λ0D0ψ
+ψ

+
σ+
2
ψ+2 − 2λ0D0ψ

+ψ2
}

+ n0

∫

dxψ+(x, 0)

Model is logarithmic at dimensiond = 6
apart from the coefficient of the∝ ψ+2 the action is that of critical
dynamics of theϕ3 model
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Annihilation reactionA+ A → ∅ with random sources and
sinks

b) dψ+ = dψ = d/2: Both third-order terms are relevant
dimension ofσ+ - larger than that of

√
E+1 ⇒ σ+ can be omitted

Effective dynamic action

S=

∫

∞

0
dt
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∫
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c) dimension ofσ+ - smaller than that of
√

E+1 ⇒ ”mass term”can be
omitted
Effective dynamic action

S=

∫

∞

0
dt
∫

dx
{

−ψ+∂tψ + D0ψ
+∇2ψ

+
σ+
2

ψ+2
+ E−1ψ

+2
ψ − 2λ0D0ψ

+ψ2
}

+ n0

∫
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Annihilation reactionA+ A → ∅ with random sources and
sinks

Dynamic actions describing the Gribov process with a random source
include terms independent of the active agent density, which are not
present in the Langevin approach!!!
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Dynamic actions describing the Gribov process with a random source
include terms independent of the active agent density, which are not
present in the Langevin approach!!!

Indeed, the fact that the rate of change of the density due to the random
sink is proportional to a power of density is a natural assumption.
The assumption that the rate of change of the density due to the random
source is proportional to a power of density is not natural.
Therefore, the dynamic action in cases b) and c) possibly predicts a critical
behaviour of the Gribov process different from that discussed in the
literature.
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Conclusions

we have investigated possible effects of sources and sinks in reaction
kinetics. They have been introduced directly in the master equation.
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we have investigated possible effects of sources and sinks in reaction
kinetics. They have been introduced directly in the master equation.

On the basis of dimensional analysis we constructed effective actions,
which are a starting point for RG analysis of critical behaviour of these
systems.
Most of the dynamic effective actions obtained are trivial from the point of
view of critical behaviour of the model, because infrared relevant
interaction terms do not generate loops diagrams.

Non-trivial cases lead to the action describing Gribov process. However, in
this manner we obtain a source term in dynamic action without agent
density. This is cardinally different from that generated by Langevin
equation.

For the study of influence of density fluctuations on annihilation reaction
A+ A → ∅, which are relevant only for dimension two or less, random
sources and sinks are unimportant.
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