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Stochastic differential equation

Fluctuation effects in physics, chemistry, biology, operations
research etc: consider the Langevin equation
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∂ϕ

∂t
= V (ϕ) + fB(ϕ) := −Kϕ+ U(ϕ) + fB(ϕ) .

where B(ϕ) is a function(al) of ϕ.
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Stochastic differential equation

Fluctuation effects in physics, chemistry, biology, operations
research etc: consider the Langevin equation

∂ϕ

∂t
= V (ϕ) + fB(ϕ) := −Kϕ+ U(ϕ) + fB(ϕ) .

where B(ϕ) is a function(al) of ϕ.

Paradigmatic example: model A

∂ϕ

∂t
= −Γ

(

−∇2ϕ+ aϕ+
λ

6
ϕ3

)

+ f ,

with the (white) noise statistics

〈f(t,x)f(t′,x′)〉 = 2Γδ(t− t′)δ(x− x
′) , 〈f〉 = 0 .
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White-noise limit

White-noise random field f mathematically problematic.
∫

f dt is a Wiener process: ∂tϕ does not exist anywhere.
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White-noise limit

White-noise random field f mathematically problematic.
∫

f dt is a Wiener process: ∂tϕ does not exist anywhere.

The proper understanding of the SDE is integral equation

ϕ(t) = ϕ(0) +

∫ t

0

[−Kϕ+ U(ϕ)] dτ +

∫ t

0

B(ϕ)dW (t) ,

which leads to stochastic integrals of Ito and Stratonovich.
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f dt is a Wiener process: ∂tϕ does not exist anywhere.

The proper understanding of the SDE is integral equation

ϕ(t) = ϕ(0) +

∫ t

0

[−Kϕ+ U(ϕ)] dτ +

∫ t

0

B(ϕ)dW (t) ,

which leads to stochastic integrals of Ito and Stratonovich.

Consider a temporal δ sequence of correlation functions

〈f(t,x)f(t′,x′)〉 = D(t,x; t′,x′) −−−→
t′→t

δ(t− t′)D(x,x′) .
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White-noise limit

White-noise random field f mathematically problematic.
∫

f dt is a Wiener process: ∂tϕ does not exist anywhere.

The proper understanding of the SDE is integral equation

ϕ(t) = ϕ(0) +

∫ t

0

[−Kϕ+ U(ϕ)] dτ +

∫ t

0

B(ϕ)dW (t) ,

which leads to stochastic integrals of Ito and Stratonovich.

Consider a temporal δ sequence of correlation functions

〈f(t,x)f(t′,x′)〉 = D(t,x; t′,x′) −−−→
t′→t

δ(t− t′)D(x,x′) .

This procedure gives rise to the solution of the SDE in the
Stratonovich interpretation.
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From Langevin equation to field theory

Functional integral for the generating function(al)

G(J) = 〈eϕ[f ]J 〉 =

∫

Dϕ 〈δ (ϕ− ϕ[f ])〉 eϕJ

=

∫

Dϕ 〈δ (−∂tϕ+ V (ϕ) + fB(ϕ)) | detM |〉 eϕJ

=

∫

Dϕ

∫

Dϕ̃
〈

| detM | eϕ̃(−∂tϕ+V (ϕ)+fB(ϕ))
〉

eϕJ .
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From Langevin equation to field theory

Functional integral for the generating function(al)

G(J) = 〈eϕ[f ]J 〉 =

∫

Dϕ 〈δ (ϕ− ϕ[f ])〉 eϕJ

=

∫

Dϕ 〈δ (−∂tϕ+ V (ϕ) + fB(ϕ)) | detM |〉 eϕJ

=

∫

Dϕ

∫

Dϕ̃
〈

| detM | eϕ̃(−∂tϕ+V (ϕ)+fB(ϕ))
〉

eϕJ .

This gives rise to the De Dominicis-Janssen dynamic action

S[ϕ, ϕ̃, f ] = lnP [f ] + ln | detM |+ ϕ̃ (−∂tϕ+ V (ϕ) + fB(ϕ)) .

In case of multiplicative noise, ln | detM | depends on f .
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Functional Jacobi determinant

Loop expansion of eTr lnM yields the representation

detM = det
(

∂t +K − U ′ − fB′
)

= det (∂t +K) e−∆(0)(U ′+fB′) .

Here, the shorthand notation stands for

∆(0)
(

U ′ + fB′
)

=

∫

dt

∫

dx

∫

dx′∆(t,x; t,x′)

×

∫

du

[

δU(x′, ϕ(t))

δϕ(u,x)
+ f(t,x′)

δB(x′, ϕ(t))

δϕ(u,x)

]

.

MQFT-2010, October 19, 2010 – p. 6/22



Functional Jacobi determinant
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detM = det
(

∂t +K − U ′ − fB′
)

= det (∂t +K) e−∆(0)(U ′+fB′) .

Here, the shorthand notation stands for

∆(0)
(

U ′ + fB′
)

=

∫

dt

∫

dx

∫

dx′∆(t,x; t,x′)

×

∫

du

[

δU(x′, ϕ(t))

δϕ(u,x)
+ f(t,x′)

δB(x′, ϕ(t))

δϕ(u,x)

]

.

Diagonal value of the propagator (response function of ϕ)
∆(0) := ∆(t,x; t,x′) remains a free parameter.
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Functional Jacobi determinant

Loop expansion of eTr lnM yields the representation

detM = det
(

∂t +K − U ′ − fB′
)

= det (∂t +K) e−∆(0)(U ′+fB′) .

Here, the shorthand notation stands for

∆(0)
(

U ′ + fB′
)

=

∫

dt

∫

dx

∫

dx′∆(t,x; t,x′)

×

∫

du

[

δU(x′, ϕ(t))

δϕ(u,x)
+ f(t,x′)

δB(x′, ϕ(t))

δϕ(u,x)

]

.

Diagonal value of the propagator (response function of ϕ)
∆(0) := ∆(t,x; t,x′) remains a free parameter.

Note that all this does not require even random f . This
ambiguity has nothing to do with the white-noise problem.
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Dynamic action

Include the determinant factor and the usual Gaussian
weight functional of f in the dynamic action.
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Dynamic action

Include the determinant factor and the usual Gaussian
weight functional of f in the dynamic action.

S[ϕ, ϕ̃, f ] = −∆(0)(U ′ + fB′)−
1

2
f(D)−1f

+ ϕ̃ [−∂tϕ−Kϕ+ U(ϕ) + fB] .
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Dynamic action

Include the determinant factor and the usual Gaussian
weight functional of f in the dynamic action.

S[ϕ, ϕ̃, f ] = −∆(0)(U ′ + fB′)−
1

2
f(D)−1f

+ ϕ̃ [−∂tϕ−Kϕ+ U(ϕ) + fB] .

Two popular choices for the parameter ∆(0)

∆(0,x− x
′) =

1

2
δ(x− x

′),

∆(0,x− x
′) = 0.
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Dynamic action

Include the determinant factor and the usual Gaussian
weight functional of f in the dynamic action.

S[ϕ, ϕ̃, f ] = −∆(0)(U ′ + fB′)−
1

2
f(D)−1f

+ ϕ̃ [−∂tϕ−Kϕ+ U(ϕ) + fB] .

Two popular choices for the parameter ∆(0)

∆(0,x− x
′) =

1

2
δ(x− x

′),

∆(0,x− x
′) = 0.

This looks like the choice between interpretations of SDE,
but randomness is completely irrelevant here.
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Perturbation expansion vs. iterative solution

Consider the simplest SDE with multiplicative noise (fixed f )

∂tϕ = −Kϕ+ fϕ → S = −∆(0)f + ϕ̃ (−∂tϕ−Kϕ+ fϕ) ,
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Perturbation expansion vs. iterative solution

Consider the simplest SDE with multiplicative noise (fixed f )

∂tϕ = −Kϕ+ fϕ → S = −∆(0)f + ϕ̃ (−∂tϕ−Kϕ+ fϕ) ,

whose dynamic action yields the perturbation expansion

ϕ = + + + + . . .

Wavy line – f ,

black square – vertex factor due to Jacobian [here, ∆(0)],

circle – initial condition for ϕ.
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Perturbation expansion vs. iterative solution

Consider the simplest SDE with multiplicative noise (fixed f )

∂tϕ = −Kϕ+ fϕ → S = −∆(0)f + ϕ̃ (−∂tϕ−Kϕ+ fϕ) ,

With the proper choice of ∆(0) the determinant contribution
restores the tree expansion of the iterative solution

ϕ = + + . . .

Perturbation expansion independent of the parameter ∆(0)!
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Step-function ambiguity of SDE

Average over the Gaussian random field by Wick’s theorem

〈ϕ〉 = +

D

+

+ + + . . .
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Step-function ambiguity of SDE

Average over the Gaussian random field by Wick’s theorem

〈ϕ〉 = +

D

+

White-noise limit: propagator chains closed by D vanish.
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Step-function ambiguity of SDE

Average over the Gaussian random field by Wick’s theorem

〈ϕ〉 = +

D

+

White-noise limit: propagator chains closed by D vanish.

The remaining subgraph reduces to a point:

→

=
1

2

∫

dt1

∫

dx1

∫

dx3∆(t−t1,x−x1)D(x1,x1)∆(t1,x1−x3)χ(x3) .
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Step-function ambiguity of SDE

Average over the Gaussian random field by Wick’s theorem

〈ϕ〉 = +

D

+

White-noise limit: propagator chains closed by D vanish.

The remaining subgraph reduces to a point:

→

=
1

2

∫

dt1

∫

dx1

∫

dx3∆(t−t1,x−x1)D(x1,x1)∆(t1,x1−x3)χ(x3) .

No ambiguity in the coefficient here, 1
2 it is!
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Stratonovich form of the dynamic action

Shrinking one-loop subgraph to a point effected by the rule

∆(0,x− x
′) =

1

2
δ(x− x

′).

Adopt this rule for the Jacobi determinant contribution as
well, then the Stratonovich SDE

∂tϕ = −Kϕ+ U(ϕ) + f B(ϕ)

gives rise to stochastic field theory with the dynamic action
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Stratonovich form of the dynamic action

Shrinking one-loop subgraph to a point effected by the rule

∆(0,x− x
′) =

1

2
δ(x− x

′).

Adopt this rule for the Jacobi determinant contribution as
well, then the Stratonovich SDE

∂tϕ = −Kϕ+ U(ϕ) + f B(ϕ)

gives rise to stochastic field theory with the dynamic action

S′′[ϕ, ϕ̃, f ] = −
1

2

[

U ′(ϕ) +B′(ϕ)f
]

−
1

2
fD−1f

+ ϕ̃ [−∂tϕ−Kϕ+ U(ϕ) + f B(ϕ)] .
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Ito form of the dynamic action

Reduced subgraphs effected by an additional term in action.
Append perturbation expansion everywhere by the rule

∆(0,x− x
′) = 0 ,

then the Stratonovich SDE ∂tϕ = −Kϕ+ U(ϕ) + f B(ϕ) gives
rise to stochastic field theory with the dynamic action
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Ito form of the dynamic action

Reduced subgraphs effected by an additional term in action.
Append perturbation expansion everywhere by the rule

∆(0,x− x
′) = 0 ,

then the Stratonovich SDE ∂tϕ = −Kϕ+ U(ϕ) + f B(ϕ) gives
rise to stochastic field theory with the dynamic action

S′[ϕ, ϕ̃, f ] = −
1

2
fD−1f

+ ϕ̃
[

−∂tϕ−Kϕ+ U(ϕ) +
1

2
B′(ϕ)DB(ϕ) + fB(ϕ)

]

,

where the detailed form of the additional term in action is

B′(ϕ)DB(ϕ) =

∫

dx′

∫

du
δB(x, ϕ(u))

δϕ(t,x′)
D(x− x

′)B(x′, ϕ(t)) .
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Master equation of a one-step process

Microscopic description of reactions by master equations for
probability densities P (t, {ni}) of occupation numbers ni.
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Master equation of a one-step process

Microscopic description of reactions by master equations for
probability densities P (t, {ni}) of occupation numbers ni.

Master equation not always an option: for fluctuations of
non-mass-density quantities no reasonable reaction models
(Navier-Stokes, critical dynamics).
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Master equation of a one-step process

Microscopic description of reactions by master equations for
probability densities P (t, {ni}) of occupation numbers ni.

Master equation not always an option: for fluctuations of
non-mass-density quantities no reasonable reaction models
(Navier-Stokes, critical dynamics).

For the DLR A+ A→ A the set of master equations is

∂tP (t, {ni})

=
D

b2

∑

e

[(ni+e + 1)P (t, n1, . . . , ni − 1, ni+e + 1, . . .)− niP (t, {ni})]

+
k

V
[(ni + 2)(ni + 1)P (t, n1, . . . , ni + 2, . . .)− (ni + 1)niP (t, {ni})] .
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Second quantization of classical variables

The set of master equations for P (t, {ni}) is reduced to a
single equation by ”second quantization” of Doi.

Fock space: operators âi, â+i and basis vectors | {ni} 〉:

âi| 0 〉 = 0 , â+j | {ni} 〉 = | {ni + δij} 〉 , [ âi, â
+
j ] = δij .
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Second quantization of classical variables

The set of master equations for P (t, {ni}) is reduced to a
single equation by ”second quantization” of Doi.

Fock space: operators âi, â+i and basis vectors | {ni} 〉:

âi| 0 〉 = 0 , â+j | {ni} 〉 = | {ni + δij} 〉 , [ âi, â
+
j ] = δij .

Master equations yield kinetic equation for state vector |Φ 〉:

d|Φ 〉

dt
= L̂(â+, â)|Φ 〉 , |Φ 〉 =

∞
∑

ni=0

P (t, {ni})| {ni} 〉 .

The Liouville operator L̂ is determined by the set of master
equations (ni| {ni} 〉 = â+i âi| {ni} 〉 etc.).

MQFT-2010, October 19, 2010 – p. 13/22



Functional integral for expectation values

From the kinetic equation, functional integral representation
for expectation values is inferred in the form

〈Q({ni})〉 =

∫∫

∏

i

Da+i DaiQN

[

{a+i (t)}+ 1, {ai(t)}
]

∣

∣

∣

a+
i
(t)→0

× e

[

S(a+, a) + Sin[a
+(0)]

]

,

where the dynamic action S(a+, a) =
∫

dt LN (a+ + 1, a) and the
second term expresses the initial condition

Sin[a
+(0)] = ln

{

∞
∑

ni=0

P (0, {ni})
∏

i

[a+i (0) + 1]ni

}

.
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Continuum limit and the Doi action

Continuum limit: a+i → ψ+(x), ai/V → ψ(x) and
∑

i V →
∫

dx.
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Continuum limit and the Doi action

Continuum limit: a+i → ψ+(x), ai/V → ψ(x) and
∑

i V →
∫

dx.

For the reaction A+ A→ A the Doi dynamic action is

S[ψ+, ψ] = ψ+
(

−∂tψ +D∇2ψ − kψ2
)

− k(ψ+)2ψ2 .
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Continuum limit and the Doi action

Continuum limit: a+i → ψ+(x), ai/V → ψ(x) and
∑

i V →
∫

dx.

For the reaction A+ A→ A the Doi dynamic action is

S[ψ+, ψ] = ψ+
(

−∂tψ +D∇2ψ − kψ2
)

− k(ψ+)2ψ2 .

The (Stratonovich) SDE for this reaction is

∂tϕ = D∇2ϕ− kϕ2 + fϕ , 〈f(t,x)f(t′,x′)〉 = δ(t− t′)C(x− x
′) .

and gives rise to the dynamic action in Ito form

S[ϕ, ϕ̃] = ϕ̃
(

−∂tϕ+D∇2ϕ+
1

2
C(0)ϕ− kϕ2

)

+
1

2
ϕ̃2Cϕ̃2 ,
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Continuum limit and the Doi action

Continuum limit: a+i → ψ+(x), ai/V → ψ(x) and
∑

i V →
∫

dx.

For the reaction A+ A→ A the Doi dynamic action is

S[ψ+, ψ] = ψ+
(

−∂tψ +D∇2ψ − kψ2
)

− k(ψ+)2ψ2 .

The (Stratonovich) SDE for this reaction is

∂tϕ = D∇2ϕ− kϕ2 + fϕ , 〈f(t,x)f(t′,x′)〉 = δ(t− t′)C(x− x
′) .

and gives rise to the dynamic action in Ito form

S[ϕ, ϕ̃] = ϕ̃
(

−∂tϕ+D∇2ϕ+
1

2
C(0)ϕ− kϕ2

)

+
1

2
ϕ̃2Cϕ̃2 ,

Superfluous ”mass” term and wrong sign of quartic term!
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Sources and sinks in the master equation

Add random source to the master equation. The simplest:
reactions A→ X (sink) and Y → A (source).
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Sources and sinks in the master equation

Add random source to the master equation. The simplest:
reactions A→ X (sink) and Y → A (source).

The source-sink part of the master equation at one lattice
site i:

dP (t, ni)

dt
= µ+iV [P (t, ni − 1)− P (t, ni)]

+ µ−i [(ni + 1)P (t, ni + 1)− niP (t, ni)] . . .
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Sources and sinks in the master equation

Add random source to the master equation. The simplest:
reactions A→ X (sink) and Y → A (source).

The source-sink part of the master equation at one lattice
site i:

dP (t, ni)

dt
= µ+iV [P (t, ni − 1)− P (t, ni)]

+ µ−i [(ni + 1)P (t, ni + 1)− niP (t, ni)] . . .

Contribution to the dynamic Doi action is

S[a+, a] =
∑

i

∞
∫

0

dt
[

µ+iV a
+
i (t)− µ−ia

+
i (t)ai(t)

]

. . .
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Random sources and sinks

Split the time interval
∫

dt→
∑

α∆t. Let the rate coefficients
µ±αi ≥ 0 be random variables with given moments

〈µn±αi〉 = E± ,n .
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Random sources and sinks

Split the time interval
∫

dt→
∑

α∆t. Let the rate coefficients
µ±αi ≥ 0 be random variables with given moments

〈µn±αi〉 = E± ,n .

Averaging over µ±αi gives rise to cumulant expansion, e.g.

∏

α,i

〈

exp
(

µ+αiV a
+
αi∆t

)〉

= exp

{

∑

αi

[

∆tE+1V a
+
αi +

1

2

(

E+2 − E2
+1

)

(V a+αi∆t)
2

+
1

6

(

E+3 − 3E+1E+2 + E3
+1

)

(V a+αi∆t)
3 + · · ·

]

}

.
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A + A→ A with random sources and sinks

Continuum limit a+i → ψ+(x), ai/V → ψ(x),
∑

i V →
∫

dx and
∑

α∆t→
∫

dt.
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A + A→ A with random sources and sinks

Continuum limit a+i → ψ+(x), ai/V → ψ(x),
∑

i V →
∫

dx and
∑

α∆t→
∫

dt. Linear term straightforward
∑

αi

∆tE+1V a
+
α,i −−−→∆t→0

V →0

E+1

∫

dt

∫

dxψ+(t,x) := E+1ψ
+ .
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A + A→ A with random sources and sinks

Continuum limit a+i → ψ+(x), ai/V → ψ(x),
∑

i V →
∫

dx and
∑

α∆t→
∫

dt. Linear term straightforward
∑

αi

∆tE+1V a
+
α,i −−−→∆t→0

V →0

E+1

∫

dt

∫

dxψ+(t,x) := E+1ψ
+ .

Take finite variances only, let higher cumulants vanish, e.g.
(

E+2 − E2
+1

)

V∆t→ σ+ ,
(

E+3 − 3E+1E+2 + E3
+1

)

(V∆t)2 → 0 .
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A + A→ A with random sources and sinks

Continuum limit a+i → ψ+(x), ai/V → ψ(x),
∑

i V →
∫

dx and
∑

α∆t→
∫

dt. Linear term straightforward
∑

αi

∆tE+1V a
+
α,i −−−→∆t→0

V →0

E+1

∫

dt

∫

dxψ+(t,x) := E+1ψ
+ .

Take finite variances only, let higher cumulants vanish, e.g.
(

E+2 − E2
+1

)

V∆t→ σ+ ,
(

E+3 − 3E+1E+2 + E3
+1

)

(V∆t)2 → 0 .

With random sources and sinks Doi action for A+ A→ A:

S[ψ+, ψ] = ψ+
(

−∂tψ +D∇2ψ − kψ2
)

− k(ψ+)2ψ2

+ E+1ψ
+ +

1

2
σ+

(

ψ+
)2

− E−1ψ
+ψ +

1

2
σ−

(

ψ+ψ
)2
.
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Stochastic combat equations

Two species: Lanchester’s combat equations for force levels

dnr
dt

= −αrnb ,
dnb
dt

= −αbnr .

Attrition rate on each side independent of its own force level.
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Stochastic combat equations

Two species: Lanchester’s combat equations for force levels

dnr
dt

= −αrnb ,
dnb
dt

= −αbnr .

Attrition rate on each side independent of its own force level.

Master equations for the stochastic combat model:

dP (t, nr, nb)

dt
= αrnb [P (t, nr + 1, nb)− P (t, nr, nb)]

+ αbnr [P (t, nr, nb + 1)− P (t, nr, nb)] , nr, nb ≥ 1 ,

dP (t, 0, nb)

dt
= αrnbP (t, 1, nb) , nr = 0, nb ≥ 1 ,

dP (t, nr, 0)

dt
= αbnrP (t, nr, 1) , nb = 0, nr ≥ 1 .
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Doi action for Lanchester’s combat model

Independent of n death rate requires a special operator

Â =

∞
∑

n=1

(−1)n−1

n!
(â+)n−1ân , Â| 0 〉 = 0 , Â|n 〉 = |n− 1 〉 , n ≥ 1 ,
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Doi action for Lanchester’s combat model

Independent of n death rate requires a special operator

Â =

∞
∑

n=1

(−1)n−1

n!
(â+)n−1ân , Â| 0 〉 = 0 , Â|n 〉 = |n− 1 〉 , n ≥ 1 ,

which leads to rather complicated Doi action for DLR

S(ψ†
r, ψr, ψ

†
b , ψb) = −ψ†

r∂tψr +Drψ
†
r∇

2ψr − ψ†
b∂tψb +Dbψ

†
b∇

2ψb

− αr(1 + ψ†
b)ψbψ

†
r

∞
∑

n=0

(−1)n

(n+ 1)!
(1 + ψ†

r)
nψn+1

r

− αb(1 + ψ†
r)ψrψ

†
b

∞
∑

n=0

(−1)n

(n+ 1)!
(1 + ψ†

b)
nψn+1

b .
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Effective large-scale action

Analysis of scaling and one-loop renormalization yields

S eff = −ψ†
r∂tψr +Drψ

†
r∇

2ψr − ψ†
b∂tψb +Dbψ

†
b∇

2ψb

− αrbψ
†
rψrψ

†
bψb − ψbψ

†
r

∞
∑

n=0

αrnψ
n+1
r

(n+ 1)!
− ψrψ

†
b

∞
∑

n=0

αbnψ
n+1
b

(n+ 1)!
.

Multiplicatively renormalizable, IR-stable fixed point at d < 2.
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Effective large-scale action

Analysis of scaling and one-loop renormalization yields

S eff = −ψ†
r∂tψr +Drψ

†
r∇

2ψr − ψ†
b∂tψb +Dbψ

†
b∇

2ψb

− αrbψ
†
rψrψ

†
bψb − ψbψ

†
r

∞
∑

n=0

αrnψ
n+1
r

(n+ 1)!
− ψrψ

†
b

∞
∑

n=0

αbnψ
n+1
b

(n+ 1)!
.

Multiplicatively renormalizable, IR-stable fixed point at d < 2.

In the ”critical” case [nr(τ) = nb(τ), αrn = αbn = α ∀n]
asymptotics for large and small force levels, respectively:

nr(t) ∼ nr(τ)e
−ατ(t/τ)d/2 , nr(t) ∼

1

ατ(t/τ)d/2
.

However, severe problems with the scaling functions.
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Conclusion

Jacobian and SDE ambiguities in functional integral
analyzed.
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Conclusion

Jacobian and SDE ambiguities in functional integral
analyzed.

Two dynamic actions for the multiplicative Stratonovich
SDE proposed.

Dynamic action in the Ito form recommended for use.

SDE and Fock-space approaches to reaction A+ A→ A

compared.

Effect of random sources and sinks analyzed.

Asymptotic analysis of Lanchester’s combat model.
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