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Model A of critical dynamics, 3rd order of e-expansion.
® N.V. Antonov, A.N. Vasil'ev. Theor. Math. Phys., V.60, N1, P.671 (1984)
Uniqueness method.
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® Gorihny S.S., Larin S.A., Tkachev F.V., Phys.Lett., A101, 120 (1984)
® Kazakov D.l., Phys.Lett., B133, 406 (1983)
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Theory of developed turbulence, 2nd order of e-expansion.

® |.Ts. Adzhemyan, N.V. Antonov, M.V. Kompaniets and A.N. Vasil'ev, Int. J.
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Analytical calculations in the higher orders of perturbation theory of
¢*-model meet with significant difficulties

® H. Kleinert, V. Schulte-Frohlinde, Critical Properties of ¢*-Theories (2001).

Numerical calculations can be an alternative to the analytical ones.
Precision of numerical calculations constantly increases with the
increase of the computational power of computers.

In this report we present the easy and effective way for numerical
calculation of graphs in any order of perturbation theory. The only
limitation of the usage of this technique is the computational power
of available computers.



The

suggested method allows:

Represent the pole residues of the graph as a convergent
integrals

Calculate graphs of any complexity due to universality and
easiness of the method

Perform a fully automated numerical calculation of
renormalization constants



Outline

Demonstration of our representation for renormalization
constants, and example of its application to 4-loop graph

Argumentation of the proposed representation

Practical realization of R-operation suitable for numerical
integration

Examples of graph calculation

4-loop results for exponent 7 in ¢3 model



The ¢* model in dimension d =6 — ¢

Renormalized action
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Superficially divergent Green functions are I'; and I'3
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We'll calculate renormalization constants on the basis of
Bogolubov's R-operation

Z=1+KRT
Here
K — operation that separates singular terms

R’ — incomplete R-operation, which is related to R by R = (1 — K)R’,
and corresponds to substraction of all divergent subgraphs of a given
graph.



The proposed representation of renormalization
constants

Let us consider a counter term in n-loop approximation and
represent it as a sum of two terms

70 = KRT) = 2 (AT 4 1)
ne ’
NT( ( determined as genuine part) is represented by an integral
finite at e = 0, and contributes to the first-order pole only.

JT( (high-order pole part) is constructed of low-order graphs of
perturbation theory ( the high-order poles are determined by the
poles of low-order graphs)

Let us realize this representation on example



The example of the graph, which contributes to Z3:

N\

Relevant (divergent) subgraphs are marked with colored lines




Genuine part Ny in representation

KRy = Z(Ny+T7);
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e Unity vertex is inserted into each line of the graph
e The above operation removes the superficial divergence
e KR’ makes the expression finite at ¢ = 0



High-order pole part J~y

A

________



Resultant expression for counterterm

+ KoR'

For calculation of counterterms it is sufficient to calculate genuine
parts of graphs in every order of perturbation theory



Argumentation
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Renormalization scheme

1 1
S = —5(7'21 + P222 + ATc)goz — gglf/zz?,gp?’

The following renormalization scheme is suitable for further
calculations
e [2]p=0,7=0=0
e Mg =—p?, {®}={p=0, 7= p?} - normalization point
° %ag r2|® =-1
o M3l = —gp?

In this scheme renormalization constants depend on g and ¢ only.



K operation

2
T p
KTy =Tafo + 2 (M2le — M2fo) + = (95T2l),

Kl =T3|g

Calculation of renormalization constants will be performed at
T = uz, then

KTy = (Ko + p*Ka)l2, Kl3 = Kol'3,

where 1
KoF(p) = Flp=0.  K2F(p) = 50;Flp=o.

K operation separates the initial part of momentum series.



Derivation of Z(" = (/\/T + jl’(n))
representatlon

Let I — be a logarithmic 1-irreducible Green function, which
determines renormalization constant Z

Z — 1 + KR/r — 1 +Zg2n,unez(n)(,u2),
n

ZW(u?) = KRTO| o

Because Z is dimensionless we obtain: Z("(u?) = p="=Z("(1)
That is why the following relationship is valid for Z("

n 2 2 n 2 2 n
70 =~ 2420, 70 = — =20, KR'T),

On the basis of this expression we'll define A and 7 operations



Definition ' n J operations

z(m = ——,ﬂa . KR'T(M = (Nr n 4 g )
NT) = —KR’ﬁaMQr(”)
I = K (R'42d,2 — 1129,2R') 1",

NT( s finite at £ = 0, because derivative 0,2 removes the
superficial divergence; R’ removes subgraph divergences.

JT( is an high order pole part.



Simplification of J operation

Previously introduced representation

N\

can be obtained from
I = K (R'129,2 — 428, R') ("

by means of rearrangement of terms, and can be proved by method
of induction.



Resultant expression for N'T(")
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Therefore representation

~0,2G(k) =

NTO) = —KR'1i29,, T

is correspondent to the sum of all kindes of insertions of unity
vertex into one of the graph'’s line
This results in the formerly declared representation for N operation



Genuine n-loop term Ay in representation KR'y = 2 (N + J7),

F——— = — — —
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e Insertion of the unity vertex removes the superficial divergence

e Insertion of the unity vertex changes the structure of
divergences

e KR’ makes the expression finite at ¢ = 0



The forthcoming part of the report is devoted to the problems
connected with representation of Ay in the form convenient for
numerical calculations

It is necessary to express the result of R-operation as the unified
expression, which does not contain divergences

The conventional procedure of R-operation (graph minus
counterterms) results in poor convergent integrals (due to
cancellation of large numerical terms)

We'll propose the way of R-operation representation, which allows
to express Ny as an well convergent integral



The problem of cancellation of large numerical
contributions

The standard approach in writing the expression for R-operation
«graph minus counterterms» guarantees a finiteness of the
value R~y due to cancellation of pole contributions of separate terms
Example

/OOO dk (k;i . [(k21+7) - %} = /OOO dk (k2_+k77)2'

Reduction to common denominator for graphs in high orders of
loop expansion leads to enormously large expressions and has no
practical usage.




Constructive realization of R-operation

® O. |. Zavialov: Renormalized Feynman Diagrams, Moscow, Nauka, 1979, 317 p.

R=(1-KR =1-K]]Ja-kKD).
J
(1 — KUY - substraction operation affecting j-th divergent subgraph

(1 — K) - substraction operation affecting the graph as a whole

In our renormalization scheme (1 — K) is substraction of the initial part
of the momentum series, which can be presented as

(1—-K)F (k) = F(k)—z /:nm F™ |z = —/ da(1—a)"d™ 1 F(ak).

m=0

1/t -
Rr=T1+; /0 dai(1 — a))m oI ({a)),

n; > 0, — dimension of subgraph , a; — parameter of momentum rescaling inside i-th
subgraph (only momenta which are external to i-th subgraph are rescaled)

i - counts subgraphs and graph as a whole



Example of calculation of genuine terms NT(")

r9{a}, {k}) =
w0 =3 [Cdm - a3 [ e} )
") D) = Er i {a;, o

Fr= (ki +1)°(k3 + 1)(k5 + 1)°(kF + 1) [(k1 + k3 + ka)* + 1] -
- [(asky + k2)? + 1] [(k1 + k3)® + 1] [(k3 + ka)* + 1]



r$({a}. {k}) =
it - L /0 dar 0 /0 40 /0 das (1-22203, [ d (i} ({2} (k)
(e} ) = i)

F> = (ki +1)°(k3 + 1)(k3 + 1)%(k; + 1) [(a12oky + 2oks + ka)* + 1] -
- [(asky + k2)? + 1] [(arks + k3)® + 1] [(k3 + ka)* + 1]



r{({a}, {k}) =

1 1 1
AT = /0 dar 0., /0 da ., /0 das 0, / d {k} ' ({a} , {k})

riV({a}, {k}) = r$({a}, {k})



Proposed realization of R operation produces only
convergent integrals

Such an integrals can be easily calculated using Monte Carlo
method

This allows us to calculate genuine part of any particular
graph.

If we know genuine part of any graph then we can construct
R’ for any graph

This leads to the fact that we can calculate renormalization
constants in any order of e-expansion. Order of e-expansion is
limited only by available computational power.



We performed calculation of critical exponent 1 up to the 4-th
order of e- expansion

n = —0.1111€ — 0.0588¢> 4 0.0439¢> — 0.081¢* + O(¢°)

precision of integral calculation was 10~*
Analytical calculations of the 3rd order of e-expansion:

® O.F. de Alcantara Bonfim, J.E. Kirkham and A.J. McKane, J.Phys A: Math Gen. 13 (1980)
L245-L251

® O.F. de Alcantara Bonfim, J.E. Kirkham and A.J. McKane, J.Phys A: Math Gen. 14 (1981)

2391-2413

e 43¢ 5[ 8375 16((3) 4
=797 36 <_22310 3 )T o)~

~ —0.11111¢ — 0.05898¢ + 0.04367¢> 4 O(e*)



Thank you for attention!









KoHcTaHTbl Z; B CNONb3YEMOII CXEME PEHOPMIIPOBKM

Zo =1+ KoR'T5, Zy =1+ KoR'T3, T3 =T3/(gu’?),

1
Zi =1+ 2 (R'T2|e — R'T2lo) -

JIOXKEHHbIA METOA Hen TBEHHO MPUMEHUM Ans Z3.
Nznoxe eToJ, HENOCPEACTBEHHO e 73

&/ 2
C y4etom kommyTaTusHOCTM onepayuii R’ n J5...|p—0 €ro MoxHo
NCnosb3oBaTb N ana Zo.
KoHCTaHTy /1 MOXHO 3aMEHUTb HA SKBUBAJIEHTHYIO KOHCTAHTY
peHOpMUpPOBKM Z4 COCTAaBHOrO onepaTopa ¢ = 02, ANs KOTOPOI
paccMaTpuBaemMasi TEXHUKA TakXe NPUMEHNMA.



3ameydaHne 0 nepekpbIBatOLLXCA nogrpadax.

MpencTaenenne cnpaseannso ana R onepauun, Ho He ans R’
onepauun (Henb3s “cokpatuts” Ha (1 — K)). [deno B Tom, 4To ecnnm
B AnarpaMMe UMETCA NEPEKPLIBAIOLLMECS CYLLECTBEHHbIE
noarpace! (8 Hawem cnydae epntubie), Hanpumep, () n [0),
To B onpeneneHne R’ onepauum He BXOAMT NMpoum3BeaeHune
onepauuii KWK, npucytcTeytowee B . ObbegnHeHne
CYLLECTBEHHbIX NoarpadoB AaeT CyLeCTBEHHbIA noarpad

ri) =r U r0) (mnsyxeocTeiit) unn anarpammy B uenom. B
NepBOM C/ly4Yae AeiiCTBytoWasn Ha 3TOT noarpad onepauusi

(1 — K")) obpawaer “nuwnior” senudauny K KU g wons, Tak
KaK MOC/IEAHSS HE 3aBUCUT OT UMMY/IbCa, €CAUN XKe obbeanHeHne
[AaeT AMarpamMmy B LEAOM, TO “NnwHee’ NponsBeaeHme ncyesaer
Tonbko ana R onepauuu. Mpumep:

NV




Peztome:
KoHTp4eHbl NONHOCTHIO ONPEAENnstOTC CYLLECTBEHHOR 4acTbio
AnarpaMM, BblYUCAEHNE KOTOPOI BKAOYAET Ciaeaytowmne Lwaru:

e [locTpoeHue gmarpammel 1 onpeaeneHne KOMBNHaTOPHOro
MHOXUNTENS;

° PaCCTaHOBKa TOYKN HA JINHUAX N HAXOXKAEHNE CYLLECTBEHHbIX
noarpadoB ANA KaXkAoi M3 pacCTaHOBOK;

e PacTsixxeHune BTEKAOLWUNX B no,u,rpad)bl nMNynbCOB U 3anuncCb
NOAbIHTErPasibHON0 BbIPaAXEHUNA.

e BbinosHeHNE YMCNEHHOrO MHTErPUPOBAHMS MO UMMYIbCAM U
napamMeTpam pacTsaXKeHUs.

A5 BblYMCEHNS Bblia HanmcaHa nporpamMma OCyLeCTBASOLLAS
® MOCTPOEHME AMarpamm
e Buiuncnenve ans vux Ny
e lMocTpoenne no Ny KOHCTaHT peHOpMUPOBOK Z

e Boiuncnenune PI-dynkuymii



