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broad class of chemical reactionsA + A
λ0−→ ∅

particles constrained to the plane (dimensiond = 2)

system is in contact with thermal bath (reservoir)→ diffusive motion

basic question: what is the possible behaviour of the systemin IR
asymptotics (t → ∞) ?

What’s the value of decaying exponentα, n(t)
t→∞
−→ t−α?
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what leads to n(t) ∼ (Dt)−d/2 = (Dt)−(1+∆)

deviation from the space dimension 2∆ = d − 2

for d > 2 V(t) ∼ t ⇒ n(t) ∼ t−1
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How do fluctuations of velocity field influence behaviour of the chemical
reaction?

∂

∂t
ψ(t) + (v.∇)ψ = D0∇

2ψ (1)

two cases:
(a) ”rapid change“ model - statistics of velocity field is prescribed

〈v〉 = 0 and〈vi(t)vj(t′)〉 ∝ δ(t − t′)
(b) v(x, t) generated by stochastic Navier Stokes equation

∂tv + (v.∇)v = ν0∇
2v −∇p + fv (2)

fv - random force
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Ā(t) =

∫

dq1 . . . dqNA(qN)PN(qN , t). (4)

5 / 19



Field model for chemical reaction

Dr. Honkonen and Dr. Hnatič talks

based on Doi approach - M. Doi, J. Phys. A9, 1465 (1976)

starting point - master equation

∂

∂t
PN(qN , t) + H(t) PN(qN , t) = 0, (3)

H(t) time evolution operator, e.g. the Liouville operatorL(t)

task is the evaluation of the mean value

Ā(t) =

∫

dq1 . . . dqNA(qN)PN(qN , t). (4)

similarities with field theory

5 / 19



Field model for chemical reaction

Dr. Honkonen and Dr. Hnatič talks
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based on Doi approach - M. Doi, J. Phys. A9, 1465 (1976)

starting point - master equation

∂

∂t
PN(qN , t) + H(t) PN(qN , t) = 0, (3)

H(t) time evolution operator, e.g. the Liouville operatorL(t)

task is the evaluation of the mean value
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∫

dq1 . . . dqNA(qN)PN(qN , t). (4)

similarities with field theory
1 dynamic equation (master equation for everyN) is linear in time like

Schrodinger eq.
2 number of particles is changing (like in QFT)

⇒ suggestion of using second quantization method
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{ni}

P({ni}, t)|{ni}〉, |{ni}〉 =
∏

i

[ψ†(xi)]
ni |0〉 (8)

Master equation

∂

∂t
|Φ(t)〉 = −Ĥ|φ(t)〉, Ĥ = ĤA + ĤD + ĤR (9)

discrete model (particles on the lattice)
Doi formalism

=⇒ continuous model
L. Peliti J. Physique46, 1469 (1985)
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R

dxA(ψ+ψ)e−Ĥt|φ(0)〉 (10)

(Hnatich, Honkonen, PRE61, 4 (2000) )

statistical sum as path integral [A. N. Vasiliev,Functional Methods in
Quantum Field Theory and Statistical Physics]

〈A(t)〉 =

∫

Dψ+Dψ Â eS1 (11)

actionS1 could be written as

S1 = −

∫ ∞

0
dt

∫

dx {ψ+∂tψ + ψ+∇(vψ) − D0ψ
+∇2ψ +

λ0D0[2ψ
+ + (ψ+)2]ψ2} + n0

∫

dx ψ+(x,0) (12)
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L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil’ev, PRE58, 1823 (1998)

in real problemv(x) satisfies NS eq. but now its properties are given as
follows

〈v(x)〉 = 0, ∇.v = 0, m ∼ 1/L

〈vi(x)vj(x
′)〉 =

g0D0δ(t − t′)
(2π)d

∫

dkPij(k)θ(k − m)k−d−2ǫeik.(x−x′)

the total action

S = S1 + Sv

where Sv = −

∫ ∫

dxdt dx′dt′
v(x, t)D−1

v v(x′, t′)
2
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model is multiplicatively renormalizable (divergences in〈ψ+ψ〉1-ir,
〈ψ+ψ2〉1-ir and〈(ψ+)2ψ2〉1-ir )

renormalization relations in minimal subtraction scheme

D0 = DZD, g0 = gµ2ǫZg, Zg = Z−1
D , λ0 = λµ−2∆Z−1

D Zλ

two-loop calculation employing double expansion(ǫ,∆) with using MS
scheme gives

Z(1)
2 = −

g(d − 1)

4dǫ
, g =

gSd

(2π)d

Z(1)
4 = −

λ

2∆

Z(2)
4 =

d − 1
4d

gλ
2ǫ− 2∆

(

−
1
∆

+
2

d + 2 2F1(1,1,2 +
d
2
; 1)

)

+
λ

2

4∆2

whereZ(n)
α means contributions∼ gn to Zα
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(II) g∗ = 0, λ∗ = −4π∆ with ǫ < 0,∆ < 0

(III) g∗ = 4dǫ

Sd(d−1)
, λ∗ = 0 with ǫ > 0,∆ > −ǫ

(IV) g∗ = 4dǫ

Sd(d−1)
, λ∗ = −4π∆ with ǫ > 0,∆ < −ǫ

not very good model - same results as in one loop-order
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incompressible fluid∇.v = 0 (low Mach numberV0/Vsound ≪ 1)

actionSNS for N.S. eq.

SNS =
1
2

∫

dt dx dx′ ṽ(x, t).ṽ(x′, t)df (|x − x′|) +
∫

dt dx ṽ.[−∂tv − (v.∇)v + ν0∇
2v] (15)

correlator in Fourier representationdf (k) = g10ν
3k4−d−2ǫ + g20ν

3k2
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Definition of propagators and interaction vertices

diagrammatic representation
< v  v >

0
= d

f
2

0
k4)

+
0 0

k2)

< v ’  v >
0 0

k2)

0
 D

0

V
i js i j

k
s is

k
j
)

v v

v ’ v

+

+

v

+

+

+

v

v
v ’

i k
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−2∆Z−3

1 Z3,

λ0 = λµ−2∆Z−1
2 Z4, ν0 = νZ1, u0 = uZ−1

1 Z2

(no renormalization of the fields is required)

basic task : calculation of RG functions
anomalous dimensionγa = µ∂ ln Za

∂µ |0 and beta functionsβg = µ ∂g
∂µ |0,
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using minimal subtraction scheme with double(ǫ,∆)-expansion

relations between bare and renormalized paramaters (in MS scheme)

g10 = g1µ
2ǫZ−3

1 , g20 = g2µ
−2∆Z−3

1 Z3,

λ0 = λµ−2∆Z−1
2 Z4, ν0 = νZ1, u0 = uZ−1

1 Z2

(no renormalization of the fields is required)

basic task : calculation of RG functions
anomalous dimensionγa = µ∂ ln Za

∂µ |0 and beta functionsβg = µ ∂g
∂µ |0,

g = {g1, g2, u, λ}

the form of beta functions could be directly obtained from definition

βg1 = g1(−2ǫ+ 3γ1), βg2 = (2∆ + 3γ1 − γ3)

βλ = λ(2∆ − γ4 + γ2), βu = u(γ1 − γ2)
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Dyson equation for propagator∆ψ+ψ = −Γψ+ψ
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Perturbative expansion forΓψ+ψ2

1 / 2 1 / 4

1 / 2

+
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Fixed points

Z4 = 1 +
A4

3g3

ǫ
+

C4
1,3g1g3

ǫ2
+

B4
1,3g1g3

ǫ
+ +

C4
2,3g2g3

ǫ2
+

B4
2,3g2g3

ǫ
+

C4
3,3g3

2

ǫ2
(16)

∆ = ξǫ, g =
gSd

(2π)d

A4
3 = −

1
2ξ
, C4

1,3 = −
1

16u(1 + u)

1
ξ(1− ξ)

, C4
2,3 =

1
32u(1 + u)

1
ξ2

B4
1,3 = −

1
16u(1 + u)(1− ξ)

(

−
4(1 + u)

πu

∫ 1

−1
dz(1− z2)

d−1
2 F(z) + ln

1 + u
2u

+

+1 +
2 + u

u
ln

2 + u
2 + 2u

)

=
2ξ
ξ − 1

B4
2,3

C4
3,3 =

1
4ξ2
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Results to the two-loop order

decaying exponent of the particle concentrationn(t) ∝ t−α

g∗α = g∗α1ǫ+ g∗α2ǫ
2

λ
∗

= λ
∗
1ǫ+ λ

∗
2ǫ

2

Fixed point α region of stability
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Thermal 1+ ∆
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2 ,∆ < 0, (R + 1
2)∆2 > ∆

Anomalous kinetics 1+∆
1−ǫ/3 ǫ > 0,−2ǫ/3 < ∆ < −ǫ/3

Normal kinetics 1 ǫ > 0,∆ > −ǫ/3

Q = 3.788,R = −0.168
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Results and plan for future work

constructed field-theoretic model of annihilation reaction

obtained renormalization constans and RG functions to the two-loop order

studied toy model and compared for the description of advecting field

solve Callan-Symanzik eq. forn(t) = 〈ψ(t)〉 to obtain decaying exponents
at one - loop order
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Thank you for your attention
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