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One-species reaction model

o broad class of chemical reactioAs A % &
@ particles constrained to the plane (dimengibs 2)
@ system is in contact with thermal bath (reservei)diffusive motion

@ basic question: what is the possible behaviour of the sysidR
asymptoticst(— oo) ?

o What's the value of decaying exponentn(t) = t=2?
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o letd < 2, in this case the diffusion is recurrent(Pblya theore21}9
R.M.S. of displacement(t) ~ (Dt)¥2 and “sweep“ volume/(t) ~ r(t)4,
what leads to  n(t) ~ (Dt)~%/2 = (Dt)~(1+2)
deviation from the space dimensioA2=d — 2
eford>2 V({t)~t=nt)~t?
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Chemical reaction in turbulent environment?

@ influence of density fluctuations was studied in
Peliti, J. Phys. Al9, L365 (1986); B. P. Lee, J. Phys. Y, 2633 (1994)

@ How do fluctuations of velocity field influence behaviour o tthemical
reaction?

00 + (V9) = DoV )

@ two cases:
(a) "rapid change" model - statistics of velocity field is prabed
(v) =0 and(vi(t)y;(t')) o< o(t —t')
(b) v(x,t) generated by stochastic Navier Stokes equation
OV + (V.V)V = 1oV — Vp + ¥ 2)

f¥ - random force
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@ based on Doi approach - M. Doi, J. Phys9A1465 (1976)
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@ Dr. Honkonen and Dr. Hnati¢ talks
@ based on Doi approach - M. Doi, J. Phys9A1465 (1976)
@ starting point - master equation
0
aPN(qNJ) + H(t) PN(qNJt) =0, (3)

(]

H (t) time evolution operator, e.g. the Liouville operaibit)
task is the evaluation of the mean value

(]

A(t) = / dap ... danAQ )Py (g 1) )

(]

similarities with field theory
© dynamic equation (master equation for evilijyis linear in time like
Schrodinger eq.
© number of particles is changing (like in QFT)

=- suggestion of using second quantization method

(]
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Field model for chemical reaction

@ 'boson’-like operators (noand#h)
[ (x), 1 ()] = §(x = X) (5)
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»(x)|0) = 0, (0fyf (x) = 0,(0]0) = 1 7)
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Field model for chemical reactio

n

@ 'boson’-like operators (noand#h)

[(x), T (x)] = 5(x — X )
[w(x), v(x)] = [T (x), T (x)] =0
$(x)[0) = 0, (0% (x) = 0,(00) =1

@ information of the statistical state transfered to a 'quaritstate

B() =D Pn} H{ni),
{ni}

@ Master equation

[{ni})

o § G

S1P(0) = ~AB),  F = Fat o+ e

@ discrete model (particles on the IatticDeC}
L. Peliti J. Physiquel6, 1469 (1985)

i formalis

=

™ continuous model

(5)
(6)
()

(8)

(9)
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Field model for chemical reaction

@ in this formulation mean values could be obtained via
(A1) = (0le/ %A@ )e M 6(0)) (10)
(Hnatich, Honkonen, PREL, 4 (2000) )
@ statistical sum as path integral [A. N. Vasili&wynctional Methods in
Quantum Field Theory and Satistical Physics)
(A1) = / Dy Dy Ae™ (12)
@ actionS; could be written as

S=— / i / ox {or+ O + ¥V (V) — Dot V2 +
0

AoDof2ut + ()21} + o / d vt (x0)  (12)
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oY + (V.V)ih = Dod?y + f

L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev, PREB, 1823 (1998)

8/19



Toy model

o describe advection of passive scaldt, x)
o + (V.V)p = Dodep + f

L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev, PREB, 1823 (1998)

@ inreal problemv(x) satisfies NS eq. but now its properties are given as
follows

(v(x)) =0, V.w=0, m~1/L
(i0y () = 228 D) °D°5 ) / kP, (k)0 (K — myk—t-2eg ()

8/19



Toy model

o describe advection of passive scaldt, x)
o + (V.V)p = Dodep + f

L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev, PREB, 1823 (1998)

@ inreal problemv(x) satisfies NS eq. but now its properties are given as
follows

(v(x)) =0, V.w=0, m~1/L
(i0y () = 228 D) °D°5 ) / kP, (k)0 (K — myk—t-2eg ()

o the total action
S=5+S

where S, = — / / dxdt dX,dt/V(X’ t)D\71V(X/,t/)

2
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Toy model

@ model is multiplicatively renormalizable (divergencesin™ )1,
(Y p?) 1qr and((¥7)2¢%) 1.ir)
@ renormalization relations in minimal subtraction scheme
Do=DZp, Go=0u*Zy Zg=25' do= 252,

@ two-loop calculation employing double expansi@nA) with using MS
scheme gives

v_ gd-1) oS
2 = 4de v= (2r)d
m_ A
Z4 2A

~2

@ d-1 g\ 1 2 d A
7241 1 FL1,2+ 1) )+
4~ Tad 26—2A< Atare b2t 5l 4 s

whereZé”) means contributions- g" to Z,,
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Fixed points of toy model

o from Z, beta functiongiy = ug—fﬂo and anomalous dimensions
Ya = ua'”Za o could be exctracted
@ results to the two-loop order

Bg=09(—2¢+p), OBn=A2A -+ D)
d-1 —
Yo = 2—dg’ A=A @= 931/(27T)d) (13)

o four possible fixed points with region of stability
(e - deviation from Kolmogorov scaling and¥®= d — 2)

I g-=X*=0withe<0,A>0

an g* —0)\*——47TAWIth€<OA<O

(my o Sj(d 1),/\*—OWIth6>0A>—6
(v) o = S 1),)\ = —4drAwithe >0, A < —¢

@ not very good model - same results as in one loop-order
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stochastic Navier-Stokes equation

o eq. for fluctuating part of velocity field
OV + (V.V)V =19V — Vp+ 1 (14)

(p=1)
@ random forcd" responsible for stochasticity and input of energy
@ incompressible fluid/.v = 0 (low Mach numbeNy/Vsound < 1)
@ actionSysfor N.S. eq.

1
S — é/dt dx o U(x, 1) 90X, t)dk (I — X]) +
/dt dx V.[-av — (V.V)V + 1pV?V] (15)
e correlator in Fourier representatiol(k) = gyov3k*9-2%¢ 4+ goq3K?
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Definition of propagators and interaction vertices

o diagrammatic representation
VAV VAVAVAV B L e U Cat Y

<v' v =1/(-iw + unkz)

<y @ > =1/-iw+D k?)

Vis= i(zﬁukS + §‘Skj)
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@ using minimal subtraction scheme with doubteA)-expansion
o relations between bare and renormalized paramaters (inchiSe)

010 = 01*Z %, Qoo = Gou 222325,
Xo=\"RZ12y, wo=vZi, up=UuZ{'Zp

(no renormalization of the fields is required)

@ basic task : calculation of RG functions
anomalous dimensiof, = ua'”zﬂo and beta functiongy = “8u 9o,

9=1{01,02, U, \}
o the form of beta functions could be directly obtained frorfirdgon

By = 01(—2¢ +371), By = (2A + 3y —73)
Br=A2A —v4+72), Bu=u(r—12)
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Dyson equation for propagatady,,+, = —I'y+
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Perturbative expansion far,
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Fixed points
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Results to the two-loop order

decaying exponent of the particle concentraingt) oc t—
0, = Gore + Ghoe®
X = Nie+ e

region of stability

Fixed point o
Gaussian 1 e<0,A>0
Driftless 1+ A unstable
Thermal 1+5 20430 <32 A<0(R+1HAZ>A
Anomalous kinetics 11:2?3 €>0,-2/3< A< —¢€/3
Normal kinetics 1 e>0,A>—¢/3

Q=3788 R= —0.168
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Results and plan for future work

@ constructed field-theoretic model of annihilation reattio
@ obtained renormalization constans and RG functions toabeaop order
¢ studied toy model and compared for the description of adwgdield

@ solve Callan-Symanzik eq. foxt) = (¢/(t)) to obtain decaying exponent
at one - loop order
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Thank you for your attention
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