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Twist

Operator Product Expansion
J(x) Z Cw(2®,1%) On (1°)

Twist: ¢ = dimension — spin:

O, 2wy = Sym@yu, Dy, ... Dyuygq— Traces
OL:lfuN = Sym@gyu Dy, ...D* ... Dyyq — Traces
Reduced matrix elements have different dimension:
(PlO | P) = Py Pu,((ON7), ({(ON)) = [mass]”
(PO, un|P) = Pu, -~~Pun(<(91\7 D, ((OF7) = [mass]?

which implies the hierarchy (for “hard” scattering at high energies):

_ _ O
Physical observable ~ Zcﬁv_Q((O[’ 5\/_ <<

N

< Higher twist effects

Conclusions
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Applications

e deep-inelastic scattering

e exclusive and semi-inclusive reactions, spin physics
— diffractive electroproduction of vector mesons
— single spin asymmetries

flavor physics: B-decays
— higher twist hadronic wave functions

form factors, electroproduction of nucleon resonances (CLAS12)
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Quasipartonic and Non—quasipartonic operators
Higher—twist operators = quasipartonic + nonquasipartonic

e Quasipartonic operators:

Bukhvostov, Frolov, Lipatov, Kuraev, 1985 (BFLK)
—  multiparticle operators built of “plus” field components

<= set closed under renormalization
< Two-particle structure of renormalization in one loop
e Nonquasipartonic operators:
— all others

<= mix with quasipartonic operators
<« appear starting twist four, e.g. 4 Fy 1y

+ o+ + - + - -
- + + + + -+ ++ ++

BFLK thiswork constrained by EOM
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motivation for this study: to understand renormalization of twist-4 nucleon
operators and incorporate some developments in N = 4 SUSY:
Beisert, 2004; Beisert, Ferretti, Heise, Zarembo, 2005

e Methods:

o Conformal operator basis for arbitrary twist [manifest SL(2) invariance]
e “plus-minus” 2 — 2 kernels by embedding SL(2,R) in SO(4, 2)
e 2 — 3 kernels by Lorentz transformation of the BFLK kernels

e For QCD practitioneer:

e Complete results for operator renormalization up to twist four

e Can be extended to arbitrary twist and maybe beyond LO
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Generating function

0(0,2) = 4(0)[0, zn] /i g(2n) n* =0

= Z_lnﬂl"'nNN|:aryN1DH2"'DNNqi|
N=0

= Z_,”m~~~”mv {Z]WNIDHQ...DNNq—Traces}
N=0
>©. N

z =2
= Z—'nm...n;w@f“m,w

=4
Il
<}

<« Light-ray operator

1
[0,2n] = exp{—igsz/ dunHA“(uzn)}
0



Introduction Spinor formalism Conformal Basis 2 — 2 Kernels 2 — 3 kernels Conclusions
Light—ray operators

Example: leading twist

O(z1,2) = q(zin)[ain, 22n] fhq(z2m), n? =0
RG-equation
9] 1o} Qs _
(1 + 805 + 57H) O, 2] = 0
where H is the integral operator Balitsky, Braun, 1989
Y da
[H-O](zl722) = QCF{/ [2(’)(2’1722) OéO(212722) —O?O(thzal)}

/da/ ago z12,z21) (’)(z1,z2)}

where zi5 = z1(1 — a) + »a, a=1-—
az+ b

cz+d’

e M is invariant under SL(2,R) transformations of the light-ray, z —
= DGLAP, ERBL, GPD

vap(z, ) = (A|0(21, 22)|B)



Introduction Spinor formalism Conformal Basis 2 — 2 Kernels 2 — 3 kernels Conclusions

SL(2) Algebra
is generated by P4, M_4, D and K_

L = L;+ily=—iPy Ly = —%
L. = L;—iLy=(i/2)K- I = (ZQ_ + 2 Z)
Lo = (i/2)(D+M_4) dz

E = (i/2(D-M_y) y = (di +5)

can be traded for the algebra of ] ]
differential operators acting on the field They satisfy the SL(2) commutation

coordinates relations
Ly, ®(2)] = Li®(2) (Lo, Ly] = <Lz
[L_,®(2)] = L-®(2) [L-,Ly] = 2L
(Lo, ®(2)] = Lo®(2)
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SL(2) Algebra
is generated by P4, M_4, D and K_

d
Ly = Li+ilo=—iP, Ly = —
L. = L;—:Ly= (Z‘/2)K7 o (zg_ + 2 Z)
Lo = (i/2)(D+M-_4) dz
E = (i/2(D-M_y) y = Q%+@

can be traded for the algebra of

differential operators acting on the field They satisfy the SL(2) commutation

coordinates relations
Ly, ®(2)] = Li®(2) (Lo, Ly] = <Lz
[L_,®(2)] = L-®(2) [L-,Ly] = 2L
(Lo, ®(2)] = Lo®(2)

The remaining generator E counts the twist t = £ — s of the field ®

B, 8(2)] = 5~ 5)2(2)

collinear twist = dimension - spin projection on the plus-direction
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Building blocks for operators:

q, 57 FNV7 DH‘L DNDUQ7 DHDVDPQ7~~~

e Tensor properties
e Equations of motion (EOM)

Baryonic twist-4 operator

€™ul (z1) Oy put (22)7 " e (2)

2}

> 3 kernels

Conclusions
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Spinor Representation

Coordinates:

To+ T3 T — T2 Ty W .,
xad=xuagd=( ; )z ( .t =(19)
T +ir2  To — X3 w T

To maintain Lorentz—covariance, introduce two light-like vectors n? = 7% = 0

Noa = Aa)\fh Nos = Haﬂd

with auxiliary spinors A and u

Tos = z)\axa + Z pafla + wWAafia + 7~_U,ua;‘<5¢ ‘

Fields:

Ya _ n
q = <Xﬁ) y 4= (Xﬁ7wd)7

= 0ha0hsFun =2 (espfap — €aplap)

Fopap

fap and fas transform according to (1,0) and (0, 1) representations of Lorentz

group
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“Plus” and “Minus” components

P =A%, Xt =AXa,  fr4+ =ANfag,
Dy = APa X+ = 2Xa, s = de‘ﬁfaﬂ )

Yo =pPa, o =0 fro =XUfas

similar for derivatives 0, — Ona

Conclusions

O4r = 20., O__ = 20: By = 20u, Oy =20

® i, x+,fr+ and ¥4, X+, fr+ are defined as quasipartonic

¢+ = ¢+(z) = ¢+(27 07 07 0)



Introduction Spinor formalism Conformal Basis 2 — 2 Kernels 2 — 3 kernels Conclusions

Operator basis for higher twists
e Operator basis containing fields and all possible derivatives is
overcompleted

e In general fields with derivatives have “bad” SL(2,R) transformation
properties.

e under infinitesimal special conformal transformations in the light-cone
direction: z={z2%w w}

1 z . w W
v-() — (1+ze)w7 (1+ez’z’ 1+ez’ 1+ez>

where from e.g.

-
(1+ ze)?
= [DwDwDzp_](z) is a “primary” field with j = 3/2

[DuDaDs_](2) DuDaDe-] (1)

1+ez

e but:

1 z ~ w w _
V(@) = m{¢+ (1+ez’z’ 1+ez’ 1+ez> +ezww(...)}

= e.g. [Dwa®1](z) does not transform homogeneously under SL(2,R)




Introduction Spinor formalism Conformal Basis 2 — 2 Kernels 2 — 3 kernels Conclusions

Solution: allow only V. Braun, A. Manashov, J. Rohrwild, 2008
~ zk wn n k
Yy (z,2,w,0) = ol [Dy Dz9+](2)
e
~k —=n
£ _ z w k
¢—(Z, Z707 w) = EF[DgDiw—](z)
n,k

and eliminate remaining “half” of transverse derivatives using EOM, e.g.

[Datos1(2) = [D—s4)(2) = [Dist-)(2) + EOM = 20,4 (2) + EOM

e similar for gluon fields
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basis fields: (E = collinear twist, j = conformal spin )
j=1/2 j=1 =372 =2 j=5/2
E=1 (o
E=2 - Duipy
E=3 Datp—, Dztpy Dty
E=4| D D3, DyDsthy Dby

building blocks for composite light-ray operators, e.g.

c{p, zl]wzl)}“{[o,zﬂfH(zQ)}b{[o,Z31Dw¢+<z3>}c

Manifest SL(2) symmetry of higher-twist evolution equations
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SL(2)—invariant RG equations
O(z1, 22) = Py (21)14(22)
Example: leading twist RG equation, (u% + ﬁ(g)a% + %H) [O(21,22)]r =0

[H- O](z1,22) = QCF{/ 20(21’22)*ao(zlz,zz)*ao(zl’zm)]

3
_/ da/ dﬂO(zfQ,zgl)—EO(zl,zz)}
0 0

[H - LyO](z1, 22) = Lg[H - O](z1, 22)
® Two—particle representations are not degenerate
T ® Ti2 = ZOC 0® T +i24n
n=

® SL(2, R)-invariance

< H can be written as a function of two-particle Casimir operator

o 0 SN
CgL(Q,R) (21 — 2)° = Jia(J12 — 1)
—

8Z1 8Z2
Invariant representation

‘ H = 2Cr [1#(712 +1)+ Tﬁ(:]\u —1) —29(1) — §:| ‘
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Footnote:
to obtain this result, notice that H and (CgL(Q’R) share the same eigenfunctions:
Hon(z1,22) =  hndn(z1, 2)
Cy'P (2, 22) = julin — 1) dulz1, 22)
further, it is easy to see that
On(21,22) = (aa—2)", Jn=n-+2

so one has to calculate action of H on these polynomials and express h, = h(jn)

Footnote to the footnote:

¢n(z1,22) = 2]’y become Gegenbauer polynomials 03/2 in adjoint representation of
SL(2)
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SL(2,R) — SO(4,2)

Beisert, 2004, Beisert et al, 2005:
® For primary fields that we are using, the same two conditions are true with respect

to the full
conformal group SO(4, 2)

< For arbitrary operators H can be written as a function of Cg()(4’2>
SL(2,R):  CS*R = j(1—1) H(J) — H(J)
S0(4,2) : C50(4'2) =JJ-1) the same function !

® Have to work out two-dimensional (matrix) representations:

5042 (zf g:ﬁ+> _ (g++ g+*> (;if g:ﬁ+>
+ ® Y- -+ C—— +® Y-

(0 e) = (2 w0) (e
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V.M. Braun, A.N. Manashov, J. Rohrwild,
arXiv:0908.1684

Results: 212 = 21 — 22

s04,2) _ 5 H_ 0 02201
Cs =JJ-1), J= (31z12 0 )

Eigenfunctions

1 n
‘70%(21:22) = <:|:1> 212t

C;7 4ol = (n+2)(n+ el J=n+2
(Cgo(4’2)<p; =(n+ 1)ne, J=n+1

Complete results for 2 — 2 RG kernels
! Not a single Feynman diagram calculated !
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Example
07 (a1, 22) = VL (2)V, (2), 07 (21, 2) = Vi (2)L ()
m(¥-®%+) - (Hu Hi2) (- ¢y
Yy @_ ) \Ha Hao Py QP
consider

a a+b /1 a—b /1 a+b a—>b _
a(5) et = [0 (1) s g (L) ] = 5wt + S me

a+b a—2>b _ hi1(n hi2(n a\ n
= sl + S Ee v = (0 R20) (5)

E(n) is the same function as in ++ operators:

1
n—+1

hi(n) = ¢(n+2) +P(n+1) - 2¢(1), hiz(n) =

obtain

.. d 1t o1t
[H O?Jr](zh,ZQ) -2t t]‘; { / a {201 I (21, 22) — Oi; (215, 22) — @Oiﬁr(zl,z%)}
0

1
+/ doe(’)ij_(zl%,zg)}
0
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Does the Lorentz symmetry fix 2 — 3 kernels?

What to do with H2~% 77 E.g. ¥_thy, Wi — hiahyfiy

Idea:

e |Infinitesimal translation in transverse plane P, 5
I[P, 4] = 200 +igA,s¢+ + EOM,

e |orentz Rotation M,,,

1
iMpp, 4] ~  (20.+ 1)- + §igZAu5\¢+ + EOM,

< Exact relations between renormalized operators containing “plus” and
“minus” fields <> The counterterms on the LHS and RHS must coincide

! It works and proves to be very efficient !

Conclusions
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Translation
Notation
09 (z1,22) =¥ (21) @ ¥, (2)

OF _(z1,2) =¥} (21) @9 (22)
O (21, 22) = ¥l (1) @ ¥, (22)

O (a1, 22, 28) = W' (1) @ W () @ Fi 4 (25)
We are looking for three-particle counterterms
g 1 4 g
(0% (21, 22)n ~ ZHST Of] (21, 22)
® Apply transverse derivative to leading-twist O operator

0,510, (21, 2)|r = 20,[07, (21, 2)]k + 20,07 (21,2)]

+ig[A,5(21)¢+(21) @ ¥4 (22)]k

+iglps (21) ® A5 (22)¢+(22)]k + EOM
e Convert A 5 into Fit

1
A(m) — As(z) = —ma(ud) / dr 14 (D)
0
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® rewrite the expression on the LHS:

p , 1 i
aui[0‘+7+(zlvz2)]R = auZ\Z[H++'O++]J(ZhZ2)

— contains two-particle and three-particle counterterms

® after a little algebra:

LHS = 5;H S + 82]1-]1(_7:;) = RHS (known expression)

(
—f

e This equation is not SL(2, R) invariant!

3
L1+2,3(j1j2j3) =L LR 4 s = Z 220 + 2r
k=1
(LHS — RHS) L3032 = 15D (LHS — RHS) + (LHS — RHS)
® This means that we have two equations
_ (=+) +-) _
LHS = oH " +8,H ) = RHS,

LHS = oiaH P +05H ) = RES
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e Final set of equations

3
81212HSf+) + H(—Tf_) = Z C;A;
=1
3
32221]1']1(:;) + H(_:;_) = Z CiAi
=l

1 1 @
[A10](21, 22) = 27, (/ ABB (21, 22, 21,) —/ da/ dBB‘P(ZI»Zgl»Zfz))
0 0 0

1 1 —
aB @
[sz](llsz):Zfz/ da/ df— ¢(21, 251, 2)
0 &

1 1 _
Qo
[Asp] (21, 22) = 2/ da/ dB— (& = B) (3, 22, %))
0 a
C; are the color structures:

Ccy = it @ %), Cy = i(t* @ t*t?), Cs = —i(t*t" @ t*)
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Result

LA +)Of](217z2)—z12{fabct ® t¢ / da/ dBB Of (21, 22, 25,)

+i(t“tb)®tb/ da/ dﬁ% Of(Zi’z,zmzfl)}
0 a

‘ 72/(Parity x Charge Conjugation) — 18 independent kernels ‘

see arXiv:0908.1684 for full list and technical details (many)
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Summary

e Lorentz symmetry uniquely determines renormalization properties of
operators involving higher-twist field components in terms of partonic ones

o Efficient technique at LO (probably true beyond LO)
e Conformal symmetry is not necessary but simplifies the analysis

dramatically

We are able to show that the same results can be obtained from Lorentz symmetry
alone, by applying translations and rotations to the leading-twist kernels

e Complete results for renormalization of arbitrary twist-four operators
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