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Motivation

Is the dimensionality of spacetime fixed or dynamical?

Are spacetime geometry and topology inputs or outputs of the
dynamics?

It is now possible to make models where these are well posed
questions and with spacetime emerging from more primitive
structures.

More generally these are questions for quantum gravity.
However,

“Finding the right mechanisms may be easier may be easier than
constructing a detailed model.”—A.M. Polyakov, 2006.
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The results presented below are based on:

R. Delgadillo-Blando, Denjoe O’Connor and B. Ydri,
Phys. Rev. Lett. 100,201601 (2008) [arXiv:0712.3011]

R. Delgadillo-Blando, Denjoe O’Connor and B. Ydri,
JHEP05 (2009) 049 [arXiv:0806.0558]
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Yang-Mills with adjoint Fermions

S [A,Ψ] =

∫
ddxTr(−1

4
FµνF

µν +
1

2
ψTCΓµDµψ)

Aµ and ψ are in the adjoint representation of the gauge group.
Dimensional reduction by taking the fields independent of p
co-oridnates gives interesting models.
The most drastic reduction is to reduce to zero dimensions (p = d)

For d = 10 reduction to zero dimensions =⇒ IKKT matrix model.
Reduction to d = 1 (so that p = 9) gives the BFSS matrix model.
And reduction to d = 4 (i.e. p = 6) gives N = 4 susy.
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The zero-dimensional model with d N × N-matrices:

S(X , ψ) = NTr(−1

4
[Xµ,Xν ]2 + ψT Γµ[Xµ, ψ]) (1)

For d = 4 the model reduces to a the 2-matrix model

Z =

∫
[dX ][dY ]e−trX 2−trY 2+g2tr[X ,Y ]2 . (2)

This in turn can be expressed as a the 3-matrix model.

Z̃ =

∫
[dX ][dY ][dZ ]e−trX 2−trY 2−trZ2+iαtr[X ,Y ]Z . (3)

This is just a Gaussian model with Myers term. Setting
g2 = (iα)2/4 gives the equivalence of the models.
The eigenvalue spectrum of one of the matrices was found exactly
[Hoppe 1982]

In Memoriam Alexander Nikolaevich Vassiliev Low Dimensional Yang-Mills: Matrix Models and Emergent Geometry



The zero-dimensional model with d N × N-matrices:

S(X , ψ) = NTr(−1

4
[Xµ,Xν ]2 + ψT Γµ[Xµ, ψ]) (1)

For d = 4 the model reduces to a the 2-matrix model

Z =

∫
[dX ][dY ]e−trX 2−trY 2+g2tr[X ,Y ]2 . (2)

This in turn can be expressed as a the 3-matrix model.

Z̃ =

∫
[dX ][dY ][dZ ]e−trX 2−trY 2−trZ2+iαtr[X ,Y ]Z . (3)

This is just a Gaussian model with Myers term. Setting
g2 = (iα)2/4 gives the equivalence of the models.
The eigenvalue spectrum of one of the matrices was found exactly
[Hoppe 1982]

In Memoriam Alexander Nikolaevich Vassiliev Low Dimensional Yang-Mills: Matrix Models and Emergent Geometry



We will consider

S(X ) = NTr(−1

4
[Xa,Xb]2 +

2iα

3
εabcXaXbXc)

Rescale Xa = αDa to get S(X ) = βE (D) where β = α4N2 = α̃4.

E (D) =
Tr

N
(−1

4
[Da,Db]2 +

2iα

3
εabcDaDbDc)
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A 3-matrix model with SO(3) symmetry.

The most general quartic single trace 3-matrix model with global
SO(3) symmetry has energy

E = Tr
N (−1

4 [Dj ,Dk ]2 + 2i
3 εjklDjDkDl + bD2

j + c(D2
j )2)

The Potential V (D) = Tr(bD2
j + c(D2

j )2)
breaks Dj → Dj + dj1 symmetry.

Partition Function

Z (β, g , b, c) =
∫

[dDj ]e−S(D) where S(D) = −βE (D)
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Ground State

The critical points of the model with V = 0 are given by

[Dk , ([Dj ,Dk ]− iεjklDl)] = 0.

So representations of the Lie algebra of SU(2) are critical points
with energy Esaddle = −1

6
Tr
N (D2

j ).

The minimum energy configuration is

Dj = Lj with E0 = −N2−1
24 .

The Lj satisfy

[Lj , Lj ] = iεjklLl and LjLj = N2−1
4 1.

These are the familiar commutation relations of angular
momentum.
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Geometry

Consider the Dirac operator

D = σj [Dj , ·] + 1 ,

with DΨ = σj [Dj ,Ψ] + Ψ.
Then one can see the ground state geometry via the “spectral
triple” (H,MatN ,D0), where the algebra is MatN with trace norm
and

D0 = σa[La, ·] + 1.

This Dirac operator has the same spectrum as that of the
commutative sphere but with a cutoff at high energies.
The ground state geometry is that of a fuzzy sphere.
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A sphere from matrices

Let Nj = 2√
N2−1

Lj

We get a sphere

N2
1 + N2

2 + N2
3 = 1. A nice round sphere.

But it is non-commutative.

[N1,N2] = 2i√
N2−1

N3

There is an uncertainty principal for spatial position!
But for N →∞ we recover a commutative sphere.
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Our “fuzzy” sphere
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A fuzzy field theory model.

Fuzzy field theories are matrix models with fixed background
matrices. The scalar field theory of the fuzzy sphere has:
SN(Φ, a, b, c) = Tr(−a[Lj ,Φ]2 + bΦ2 + cΦ4)
Lj are the generators of su(2) in the N dimensional representation.
again with Φ an N × N matrix.

The action SN(Φ, a, b, c) converges for N →∞ to the action of a
scalar field φ on the round commutative sphere.

lim
N→∞

∣∣∣∣S(φ, r , λ)− SN(Φ,
1

2N
,

r

2N
,
λ

4!N
)

∣∣∣∣→ 0 .
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The matrix Φ =
∫
S2 ωρNφ, with ω the unit volume form on S2 and

ρN is a particular matrix valued function on S2.

ρN =
∑
lm

YlmŶlm

where Ylm are the spherical harmonics and Ŷlm are polarization
tensors satisfying

[L3, Ŷlm] = mŶlm and [Lj , [Lj , Ŷlm] = l(l + 1)Ŷlm .

So that if

φ =
∞∑
l=0

l∑
m=−l

clmYlm

then

Φ =
N−1∑
l=0

l∑
m=−l

clmŶlm

.
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Small fluctuations

The zero temperature ground state of the model
E = Tr

N (−1
4 [Dj ,Dk ]2 + 2i

3 εjklDjDkDl)

is a round fuzzy sphere with Dj = Lj and E0 = −L2
j

6 .

Expanding around the minimum solution, Dj = Lj + Aj yields a
noncommutative Yang-Mills action with field strength
Fjk = i [Lj ,Ak ]− i [Lj ,Ak ] + εjklAl + i [Aj ,Abk].
As written the gauge field includes a scalar field,

Φ = 1√
N2−1

(Dj − Lj)
2 = 1

2(NjAj + AjNj +
A2

j√
c2

) .

It is the component of the gauge field normal to the sphere when

viewed as imbeded in R3 with Nj =
Lj√
c2

and c2 = L2
j = (N2− 1)/4.
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Increasing the temperature. Monte Carlo Simulations

Defining S =< S > and β = α̃4
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The entropy jump

S = 5
12 as the transition is approached from the fuzzy sphere side,

and jumps to S = 3
4 in the high temperature phase.

The infinite temperature entropy does not contribute 1
2 but 1

4 per
degree of freedom.

So the model remains highly interacting at high temperatures.
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Specific Heat

The specific heat Cv/N
2 where Cv =< S2 > − < S >2 and

β = α̃4
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Specific Heat Exponent

Entropy Jump

The transition is unusual in that it has a jump in the entropy.
∆S = 1

3 indicating a 1st order transition.

Divergent Specific Heat

But it has a divergent specific heat C = A−(Tc − T )−α typical of
a continuous (or second order) transition. We find the specific
heat exponent α = 1

2 .

Our analysis gives the critical point βc = (8
3)3 and a critical

exponent α = 1
2 for the divergence of the specific heat.
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Superfluid Specific Heat

The Specific Heat of Liquid Helium in Zero Gravity very near the
Lambda Point from J. A. Lipa et al Phys. Rev. B 68, 174518
(2003). The specific heat exponent α = −0.0127± 0.0003.
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As the temperature is increased the fuzzy sphere expands
and evaporates
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Eigenvalues in the low temperature phase

Eigenvalue distribution of D3 for N = 24.
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Eigenvalues in the low temperature phase

Eigenvalue distribution of [D1,D2] for N = 24.
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A closer look at the transition

In the fuzzy sphere phase the eigenvalues fluctuate around the
discrete values corresponding to Da = La, the irreducible
representation of SU(2) of dimension N.

In the matrix phase, the distribution of eigenvalues of

Xa = (
β

N2
)
1/4

Da =
α̃

N1/2
Da

is largely independent of α̃ and of N.

In fact fluctuations are around commuting matrices with a
uniform distribution in a ball of radius 2. E.g for N = 12, the
distribution for X3 ranges from −2 to 2.
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Eigenvalue Spectrum

The spectrum is well fit with ρ(x) = 3(R2−x2)
4R3 with R = 2.0
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From solid ball of eigenvalues to fuzzy S2.

As the system cools a fuzzy S2 emerges from the ball
corresponding the the eigenvalues of the commutating matrices at
high temperature.

In passing through the transition the eigenvalue ball of radius 2

expands to a fuzzy sphere of radius
√

Nα̃
2 .
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Conclusions

• The 3-matrix model provides a concrete model where one can
track the geometry as it passes through a phase transition and
dissapears.

• The transition is in the geometry. The underlying geometry at
a microscopic level is non-commutative— described by a fuzzy
sphere with Yang-Mills and matter fluctuations. At high
temperatures the eigenvalues form a solid ball of infinitisimal
radius on the scale of the fuzzy sphere.

• The geometrical phase emerges as the system cools. This is
suggestive of a geometrical phase emerging as the universe
cools, or perhaps as the relevant coupling runs to a larger
scale.

• Other phase transitions with similar features occur in the
dimer model and 6-vertex models.
It is probable that such transitions belong to a new
universality class of topological phase transitions.
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Thank you for your attention!
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