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General Relativity is a good classical theory.

But when we construct the quantum gravity big problems arise:

• nonrenormalizability

• formulation of the causality principle

• problem of time choice

• . . .

See, for example, review S. Carlip, ’Quantum Gravity: a Progress Report’,

Rept. Prog. Phys, 2001, v. 64, p. 885, arXiv:gr-qc/0108040.



The nature of many problems:

we quantize the gravity following the method which worked well at
quantization of field theories in flat space-time,

but if we describe the gravity in terms of variables gµν(x) then we
quantize the structure of the space-time and the geometrical
properties of the space-time become operators.

Besides the direct quantization we can search for a workaround:

• string theory

• loop quantum gravity

• . . .

• gravity as a field theory in flat space



Regge-Teitelboim embedding theory

Our four-dimensional space-time is a surface in flat space.

The embedding function:

ya(xµ) : R4 7−→ R1,N−1, a = 0, 1, . . . ,N − 1. (1)

The induced metric:

gµν = ηab ∂µya ∂νy
b. (2)



The action:

S =

∫

d4x
√−g R . (3)

Regge-Teitelboim equations:

(Gµν − κ Tµν) ba
µν

= 0 (4)

(where ba
µν

is the second fundamental form of a surface)
include "extra" solutions.

We can either exclude these solutions
or attempt to interpret them.



Regge-Teitelboim embedding theory is a theory of one
three-dimensional brane.

This is not a field theory, therefore many problems remain.

The analogy:
mechanics of one particle — embedding theory

continuous medium theory — ???
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A field theory which describes the foliation of flate space R1,N−1

into the system of Regge-Teitelboim surfaces.

Assumptions:

• surfaces do not intersect

• surfaces do not interact (maybe, almost)



Foliation theory

Let zA(ya) be a real field in the flat space R1,N−1,
A = 1, . . . ,N − 4.

For each configuration of the field zA(ya) there is a foliation of
R1,N−1 into a system of four-dimensional surfaces zA(y) = const.

We can suppose that one of these surfaces (any of them) is just our
space-time.

Field zA(y) =⇒ form of the surface =⇒
=⇒ internal geometry =⇒ gravity
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Initially there is no coordinates on the surfaces, therefore gravity is
described in gauge-invariant terms with respect to general
covariance group symmetry.

A new symmetry arises:

zA(y) −→ z ′A(y) = f A(z(y)). (5)



We can express the projector in terms of zA(y)

vA
a = ∂az

A, wAB = vA
a vB

b ηab,

Π⊥ab = wABvA
a vB

b , Πab = ηab − Π⊥ab. (6)

In order to work with nonscalar values we must temporarily
introduce the coordinates xµ(y) on the surfaces.

{zA(y), xµ(y)} is a curvilinear coordinates in R1,N−1.

Using the embedding formalism we can express all values in terms
of zA(y).
For example, the Riemann curvature tensor is

Rabcd = Πe
aΠ

f
bΠ

g
c Πh

d

[(

∂e∂gzA
)

wAB

(

∂f ∂hz
B
)]

gh
, (7)

where antisymmetrization operation [Ogh]gh ≡ Ogh − Ohg is used.



Besides zA(y) , the fields of matter can take place in R1,N−1.

The action which provides the absence of interaction between the
surfaces:

S =

∫

dz d4x
√−g (R + Lm) . (8)

Let only tangent derivatives ∂̄d ≡ Πe
d∂e be used in Lm, for example

Lm =
1

2

(

∂̄aϕ
) (

∂̄aϕ
)

− V (ϕ) =
1

2
gµν (∂µϕ) (∂νϕ) − V (ϕ). (9)



Besides zA(y) , the fields of matter can take place in R1,N−1.

The action which provides the absence of interaction between the
surfaces:

S =

∫

dz d4x
√−g (R + Lm) . (8)

Let only tangent derivatives ∂̄d ≡ Πe
d∂e be used in Lm, for example

Lm =
1

2

(

∂̄aϕ
) (

∂̄aϕ
)

− V (ϕ) =
1

2
gµν (∂µϕ) (∂νϕ) − V (ϕ). (9)

If we change the variables from curvilinear coordinates to rectilinear
ones, then we obtain (denoting w ≡ det(wAB))

S =

∫

dNy
√

|w | (R + Lm) . (10)

Here the coordinates xµ on the surfaces are not used.



Equations of motion

The variation of embedding function at arbitrary δzA(y):

δya(x , z) = −δzA ∂

∂zA
ya(x , z) − δxµ ∂µya(x , z). (11)

The variation of field of matter at arbitrary δzA(y):

δϕ(x , z) =

(

δzA ∂

∂zA
ya(x , z) + δxµ ∂µya(x , z)

)

∂aϕ(y). (12)

The variation of action at arbitrary δzA(y):

δS =

∫

dz d4x

(

2
√−g (Gµν − κ Tµν) ba

µν
δya(x , z) +

δS

δϕ(x , z)
δϕ(x , z)

)

(13)



The equations of motion for matter:

δS

δϕ(x , z)
= 0 ⇔ gµνDµ∂νϕ + V ′(ϕ) = 0. (14)

The equations of motion for field zA(y) coincide with
Regge-Teitelboim equations:

(Gµν − κ Tµν) ba
µν

= 0. (15)
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These equations are invariant with respect the transformation (5),
but the action (10) is not invariant.



Possible advantages for quantization

• there is no need to quantize the structure of the space-time

• the gravity is described in gauge-invariant terms, but there is a
new symmetry

• the causality principle can be formulated in a usual way

• a 3+1 decomposition arise in a usual way at quantization

• the problem of time choice can possibly be solved

• analysis of divergences and renormalizability is simplified:
• a dimensional regularization can be used for flat space
• a new symmetry can lead to some cancellation of divergences



Problems of the approach

• the increase of divergences owing to the increase of space
dimensionality

• the problem of extra solutions
• we can impose additional constraints, but then a preferential

direction arise
• we can try to find boundary conditions at which the solutions

do not contradict to observations

• the problem of linearization of equations


