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General Relativity is a good classical theory.

But when we construct the quantum gravity big problems arise:
e nonrenormalizability
e formulation of the causality principle

e problem of time choice

See, for example, review S. Carlip, 'Quantum Gravity: a Progress Report’,
Rept. Prog. Phys, 2001, v. 64, p. 885, arXiv:gr-qc/0108040.



The nature of many problems:

we quantize the gravity following the method which worked well at
quantization of field theories in flat space-time,

but if we describe the gravity in terms of variables g, (x) then we
quantize the structure of the space-time and the geometrical
properties of the space-time become operators.

Besides the direct quantization we can search for a workaround:

string theory

e loop quantum gravity

e gravity as a field theory in flat space



Regge-Teitelboim embedding theory

Our four-dimensional space-time is a surface in flat space.

The embedding function:
ya(xH) - R* — RUN-L a=20,1,...,N—1.
The induced metric:

8uv = Nab 8uya &be'



The action:
S= / d*x\/~—g R. (3)
Regge-Teitelboim equations:
(G" =5 T") by, =0 (4)

(where b7, is the second fundamental form of a surface)
include "extra" solutions.

We can either exclude these solutions
or attempt to interpret them.



Regge-Teitelboim embedding theory is a theory of one
three-dimensional brane.

This is not a field theory, therefore many problems remain.
The analogy:

mechanics of one particle — embedding theory
continuous medium theory — 777
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A field theory which describes the foliation of flate space R1:N-1
into the system of Regge-Teitelboim surfaces.

Assumptions:

e surfaces do not intersect

e surfaces do not interact (maybe, almost)



Foliation theory

Let zA(y?) be a real field in the flat space RVNV=1,
A=1, ... N—4a

For each configuration of the field z(y?) there is a foliation of
RN~ into a system of four-dimensional surfaces z(y) = const.

We can suppose that one of these surfaces (any of them) is just our
space-time.

Field z4(y) == form of the surface —
= internal geometry = gravity
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For each configuration of the field z(y?) there is a foliation of
RN~ into a system of four-dimensional surfaces z(y) = const.

We can suppose that one of these surfaces (any of them) is just our
space-time.

Field z4(y) == form of the surface —
= internal geometry = gravity

Initially there is no coordinates on the surfaces, therefore gravity is
described in gauge-invariant terms with respect to general
covariance group symmetry.

A new symmetry arises:

2Ay) — 2y) = F(2(y)). (5)



We can express the projector in terms of z4(y)

A A AB A B_ab
Va:aaz’ w =VaWv o,

A B
M ap = wavy vy, Nab = Nab — ML ap- (6)
In order to work with nonscalar values we must temporarily
introduce the coordinates x*(y) on the surfaces.
{zA(y), x*(y)} is a curvilinear coordinates in RHN-1.
Using the embedding formalism we can express all values in terms

of ZA(y).
For example, the Riemann curvature tensor is

Raped = NENEMEM? [(aeang‘) Wag (afathﬂgh, (7)

where antisymmetrization operation [Ogp|gh = Ogn — Ong is used.



Besides z”(y) , the fields of matter can take place in R1N=1,

The action which provides the absence of interaction between the

surfaces:
5= /dz A V=g (R L) (8)
Let only tangent derivatives 9y = M50 be used in L, for example
1, - 5o 1 w
Lm =5 (9ap) (07¢) = V(#) = 58" (9up) (00) = V(¥). (9)
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If we change the variables from curvilinear coordinates to rectilinear
ones, then we obtain (denoting w = det(w*B))

Sz/dNy Wl (R + L) (10)

Here the coordinates x* on the surfaces are not used.



Equations of motion
The variation of embedding function at arbitrary §z4(y):
5y? S SR 5xH Opy® 11
y (sz)__ z Fy (sz)_ X ;Ly (sz)' ( )
The variation of field of matter at arbitrary 6z (y):
) — (522 5xH 0,y? ) 12)
plx,2) = | 0275 3y7(x, 2) + 0x" Duy*(x, 2) | Bap(y).  (

The variation of action at arbitrary 6z(y):

0S
4 pv vy |a
0S =[dzd x<2\/g(G s 1 )bw/&ya(x,z) + 5o(x.2) 5@(X,z)> (13)



The equations of motion for matter:

0S

_92 "Dy + V'(p) = 0. 14
5o(x.2) 0 < g"Duoyp+ Vi) (14)

The equations of motion for field z(y) coincide with
Regge-Teitelboim equations:

(GH — 5 T™) b2, = 0. (15)
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The equations of motion for matter:

0S
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The equations of motion for field z(y) coincide with
Regge-Teitelboim equations:

(GH — 5 T™) b2, = 0. (15)

If we do not use the coordinates x* on the surfaces:
0,0%0 + V'(p) =0,
(ch — TCd) 2 =0. (16)

These equations are invariant with respect the transformation (5),
but the action (10) is not invariant.



Possible advantages for quantization

there is no need to quantize the structure of the space-time

the gravity is described in gauge-invariant terms, but there is a
new symmetry

the causality principle can be formulated in a usual way
a 3+1 decomposition arise in a usual way at quantization

the problem of time choice can possibly be solved
analysis of divergences and renormalizability is simplified:

e a dimensional regularization can be used for flat space
e a new symmetry can lead to some cancellation of divergences



Problems of the approach

e the increase of divergences owing to the increase of space
dimensionality
e the problem of extra solutions

e we can impose additional constraints, but then a preferential
direction arise

e we can try to find boundary conditions at which the solutions
do not contradict to observations

e the problem of linearization of equations



