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Introduction

[n 1948 1t was shown by Casimir that vacuum fluctuations
of quantum fields generate an attraction between two parallel
uncharged conducting planes | H.B.G. Casimir, Proc. K. Ned.

Akad. Wet. 51, 793 (1948)]

F %

T'his phenomena called the Casimir effect (CE) has been well

investigated with methods of modern experiments

[ S.K.Lamoreaux, Phys. Rev. Lett. 78,5 (1997), U.Mohideen
and A. Rov, Phys. Rev. Lett. 81. 4549 (1998): A. Roy,
C.-Y. Lin, and U. Mohideen, Phys. Rev. D 60, 111101(R)
(1999), B.W. Harris, F. Chen, and U. Mohideen, Phys. Rev.
A 62, 052109 (2000), G. Bressi et al., Phys. Rev. Lett. 88,

041804 (2002)].



The CE is a manifestation of influence of fluctuations of
quantum fields on the level of classical interaction of material
objects.

Theoretical and experimental investigation of phenomena
such a kind became very important for development of micro-
mechanics and nano-technology.

Though there are many theoretical results on the CE

KA. Milton, J.Phys. A 37, R209 (2004)], however the
majority of them are received in framework of several models

based not on the quantum electrodynamics (QED) directly.



An approach for construction of the single QED model for
imvestigation of all peculiar properties of the CE for thin ma-
terial films was proposed in | V.N.Markov, Yu.M. Pis'mak,
ArXiv:hep-th/0505218, J Phys.  A: Math. Gen. 39, 6525
(2006) (arXiv:hep-th/0606058), 1.V. Fialkovsky, V.N. Markov,
Yu.M. Pis'mak, Int. J. Mod. Phys. A 21,2601 (2006), 1.V. Fi-
alkovsky, V.N.Markov, Yu.M. Pis'mak. J.Phvs. A: Math. Gen.
41, 075403 (2008)].



We consider its application for simple forms of films. We
show that gauge invariance, locality and renormalizability con-
sidered as basic principles make strong restrictions for con-
structions of the CE models in QED, which make it possible

to reveal new important teatures of the CE-like phenomena.



Formulation of the model

Svinanzik action functional (Symanzik K 1981 Nucl.
Phys. B 190 1):

S(¢) = Sy(p) + Saer(e)

where
Splo) = [ Lio(x)dPx, Spi(p) = [ Lai(o(z))d? z,
D\ ) de f\ ¥ - de f\'¥

and I'is a subspace of dimension D" < D in D-dimensional

SPACe.



From the principles of QED: gauge invariance, locality,
renormalizability it follovs that in the model of interac-
tion of material surface with the guantum QED fields the
pure photon field contribution can be described with the
action functional of the form

S(A) = So(A) + Saep(A)
Here Sh(A) - is the usual free action of the photon field
Aylx)
Sp = %/dd‘i‘.F”“(:f)Fﬁ_y(I),
Fuu(@) = 9, A, (x) — 9,4, (x),

and Sger(A) 1s the defect action modeling the interaction

of field A, () with a macroscopic inhomogeneity.



[fit is a 2 surface (defect) with the form described by
equation ®(x) = 0, then:

Sier = 0 / d*2e""0,@(x)5(D(x)) A, () O\ Ag().

For the stationary defect dyd(z) = 0 which will be

considered the action Sg.¢(A) can be written as

—*

S(ggf(ﬂ) = {T/d42‘5 ){22 Ao(z)Lg 4’( )+ (}{I}[E(SI‘) X E}DJI(T)]}

where Lg = ¢[0P x d] and o is a dimensionless coupling
constant.



For the sphere with radius rg

The limit 0 — oo corresponds to ideal conducting sur-
face with with conditions n,F*|s = 0.



Regularization

To remove the ultraviolet divergencies we use the Pauli-
Willars regularization:
Sp — S _ ! e F () (1 + M—20,0MF,, (z
0 0r =7 cF*(x)(1+ M™70,0") F) ()
S(f’i) — ST(A) = Sp, + nggf
and use for calculations the Fuclidean version of the ac-

tion Sg, which 1s obtained by replations

xrog —r —i:l?o_, a[} — '?ff)g, ;’-L] — i"-;’-lgj a — 1a.



In this case
FM(2)F(2) = Fu(2)Fy(2), da — —id'z,
2iAo(x) Lo A(z) + OD[A(z) x dA(x)] —
— —2Ag(x) Lo A(x) + i0D[A(x) x yA(x)].
Thus, 75, — —Sg,, where
Sk = i / d*e{M~*F,,(z)(M?* — 0*)F,,(z) +
+iod(D(2))(2A0(x) Lo A(z) — i0D[A(z) x dyA(x)])}.



Casimir energy

For the Casimir energy Eogs holds the expression

1 |

where D 1s the propagator in the model with defect, and
Dy 1s the propagator for the model in homogenous space.
For the spherical defect 1t diverges by M — oo.



Divergences and renormalization

The asymptotic of the regularized Casimir energy of
the spherical defect with raduis » for large M has the
form:

Flo 1
0

with

=1
2

> 1 -0 (21 + 1)
X/ dp In gf( ) Lp)_|_ | : .__1( : ) - |
: it ) W @




Here the following notations are used:

Gi(x) = I 1(x) Ky 1 (),

Ri(e) = (5hag@)+ iy @)) (5Kralo) + Kiyo))

with Bessel function IE+%(I)! hH%(:}:‘.j.
[t 1s finite for finite M but diverges for removing of
regularization M — oo. This problem is solved by the

renormalization.



For o0 — oo we opbtaine

Fg@ — F(J”J—}Gﬁ —

HZ‘?JJA

oo o1+ 1)t
></c. {m[ PR ()]+(4p2+(23+ )JB}*

[t the results for ideal connecting sphere Feg. = Foo /70,

coinciding with one obtained by Bover.



For removing of the divergences ol Casimir energy in
the framework of usual multiplicative renormalization
procedure one needs to add to the action the terms with-
out photon field with Lagrangian

La(z) = (Ar: + B)o(

T —ro),

having two constant parameters A, B . Making renor-
malization of them one can cancel the divergences and
obtain the finite renirmalized Casimir energy

Flo)

ro

Eou = 4ﬁ?‘ga + 3+

with finite parameters a;, 3 of dimension of surface ener-
oy density and energy. If @ > 0, F(o) > 0 the function
Eege has minimum with rg = \E/F(Gf)/Sﬁas.




Casimar-Polder eftfect

Casimir-Polder effect was predicted theoretically in 1948
(H.B.G.Casimir and D.Polder, Phys.Rev. 73, 360 (1948)).
Casimir and Polder found the energy of a neutral point
atom in its ground state in the presence of a perfectly
conducting infinite plate. In the case of a perfectly con-
ducting plate one can say that the imteraction of a fluc-
tuating dipole with the electric field of its 1mmage vields
the Casimir-Polder potential.



Model

In our model the interaction of the plane surface x3 =0
with a quantum electromagnetic field A, is described by
the action:

Su(4) =a [ €0 A, ()94, (2)5(y)dr

We will use latin indices for the components of 4- ten-

sors with numbers 0,1, 2, also the following notations:
P"Fm(,l;) _ gfm o kikm/kﬂr
Imery . Imn3g, L2 32 2 2
L UL) — € 'l'ﬂ/“‘ ) k™ = L‘O o L‘l o ‘lL'Qr

—

k| = V k2, and g - metric tensor.

where



The atom is modeled as a localized electric dipole at
the point (1, x9, x3) = (0,0, ), which is described by the
current Jﬁ_(ilf):

2

Z 1)0'5(a1)8(29)0 (5 — 1),

i=1

Ji(x) = —pi(t)o(x1)d(x9)d (w3 — 1), i =1,2,3,



The condition of the current conservation holds:

d,J" = 0.
pi(t) 1s a function with a zero average and the pair cor-
relator
+0o0 E,_—i.‘.d[tl—ﬁg)
(p;(t1)pr(ta)) = —i ; ajp(w)dw,
oo 2T

where ;. (w) for w > 0 coincides with the atomic polar-
1zability.



The aim is to calculate the mteraction energy £ of
the atom with a plane, and we will use the following
representation for the energy:
Z . -
E = T {ln/exp (2S(A)+ JA) DA — 111/e::~:p (2S(A)) D;—l}
(a)

{- }a) means that the @ = 0 value of the a-dependent
function has to be subtracted: {f(a)}) = fla) — f(0).



The ground state energy of a neutral atom in the pres-
ence of a plane with Chern-Simons interaction is obtained
in the form:

1 -‘_’12 +oo ot
E=- . dwe™ " 2(1 + 2wl auzs(iw
6472151 + a? ,/0 ‘ (1 + 2wl)az(iw)

+oC
—l—f dw _EWE( -+ sz -+ %232)(au(1w) -+ ﬂzz(?w))
0

1 a
64722 1 4 a?

400
4+ / dwe_%@w(l + QLdf) (ﬂlﬁ(iwj - &21(5"-’“))
0



[t vields the well known Casimir-Polder potential in the
limit @ — +o0. The part of the formula with diagonal
matrix elements of matrix aj(iw) is equal a®/(1 + a?)
times the Casimir-Polder interaction of a neutral atom
with a perfectly conducting plane. The last line of the
formula is odd in a and contains the antisymimetric com-
bination of ofl-diagonal elements of the atomic polariz-

ability.



[t 1s interesting to analyze the contribution in the en-
erey £ from the off-diagonal elements of the atomic po-
larizability to the potential in more detail. The atomic
polarizability can be expressed in terms of dipole matrix
clements:

o) = S (A IAHO) (Ol o110

Wno — W — 1€ Wno + W — 1€

T



Wy 18 a transition cnergy between the excited state
the atom and its ground state

n) of
0), d is a dipole moment
operator in the Schrodinger representation. The symmet-
SN ‘ o o J;“—l .
ric agy(w) and antisymmetric aj(w) parts of ajp(w) =

jk( ) + C},jk( w) can be written as follows:

: 2&&.} UHE’J i
br . . T jlzf o 5- .
aj(w) = E 0 o ap;(w),

n om0 ¥
QewlmM?
AN Jk A
&jk(w) = Z 9 B —ﬂaj( )
n om0 “

M = (01 |m) (n] g0,
Thus, the contribution of aﬁ (w) to the potential is differ-

ent from zero when matrix elements of a dipole moment
operator have imaginary parts.



Consider the system with a nonzero C}:i(w} and as-

sume for simplicity the one mode model of the atomic
polarizability with a characteristic frequency wyg. Then
aih(w) = iwCy /(2(wiy—w?)), where Cy is a real constant.

In the limit of large separations wypl =>> 1 we obtain :

a? C]ﬁll([]) + C]ﬁgg([]} + &33(0) a Co

E‘wulfl‘?l - 1 + a2 32724 1 + a2 32m2w?

al-

wavs dominates. Assuming for simplicity aq1(0) = ag0(0) =

At large enough separations the

a33(0) = C1/(3wyg), C1 is a positive constant, one can

. . C _
see from () that if the condition %—zll < 1 holds then for

. C

separations [ < Ot he term with off-diagonal ele-
~ |a|lCiwn

ments of the atomic polarizability (the second term in

£5.

Z;-



[n the limit of short separations (b = wypl <€ 1) we

obtain:
1 {EQ +00
El., = — — {ﬁu(a; W )+ o ﬂu—+2&--ia:)
oy 11 64ﬂ2531-+-ﬂ2!}£ 11 (2w ) +age(iw)+2as;(iw)
(o a T .9 T,q
_32W9331+a2(1 — b+ 20 — b +) ~

1 a’ (s a
o —— 23( QCI——I—ﬁCg) for b — 0.
2l \1+a* "3 1+4a
. .. Oy~ _
Hence, if the condition |Tﬂ72|1§ < 1 holds then the term
with off-diagonal elements of the atomic polarizability

dominates in E‘wﬂljﬂgl in the Lmit of short separations.
Thus if we consider the one mode model for the atomic
polarizability and the criterion |a| < % holds then the
antisymmetric part of the atomic polarizability plays a
dominant role in the interaction of the atom with the
Chern-Simons plane.






The fermion defect action can be written as
Se(1), ) = (2)

= [P()[ A+ 'y + 5T + VM) + Vo] () 0(P(x))da

Here, v,. p =0, 1,2, 3, are the Dirac matrices, 75 = 270717373

I/

O = UV — YY) /2, and A, 7, wyv,, WM = =W v =
0,1,2,3 are 16 dimensionless parameters.

FExpressions (1), (2) are the most general forms of gauge
ivariant actions concentrated on the detect surface being in-

variant in respect to reparametrization of one and not having

any parameters with negative dimensions.



We consider CE-like phenomena arising on the distances
from the defect boundary much larger then Compton wave-
length of the electron.

In this case one can neglect the Dirac fields in QED be-
cause of exponential damping ot fluctuations of those on much
smaller distances (~ m_ 1 =~ 107%m for electron, ~ m, D
10~ em for proton [8]).

Thus, for constructing ot model we can use the action of

free quantum electromagnetic field (photodynamic) with addi-

tional defect action (1).



In order to expose essential features of CE-like phenomena
in constructed model. we calculate the Casimir force (CFE) for
simple case of two parallel infinite plane films and study a
scattering of electromagnetic wave on the plane defect.

We consider also an interaction of the plane film with a par-
allel to it straight line current and an interaction of film with a
point charge and homogeneous charge distribution on parallel

plane.



Casimir force
We consider defect concentrated on two parallel planes x5 = 0
and xs = r. For this model, it is convenient to use a notation
like & = (xq, 21, 19, 23) = (T, 23).

Defect action (1) has the form:
1 | . , 2 , ,
Sop = 5 [(a1d(x3) + asd(xs — 1)) PA(x)F,,(x)dr.

It 1s the main point in our model formulation, and no any

boundary conditions are used.



The action Syp is translationally invariant with respect to

coordinates x;, 2 = 0, 1, 2. "The propagator Dg(x,y) is written

oS,
| | B} o
DQP(:E! y) — 7 fDQP(k? L3, y3)€lkm_y)dkr

(27)3

and Dop(k, x3,y3) can be calculated exactly.



Using latin indexes for the components of 4-tensors with
numbers 0, 1, 2 and notations

—

me(g_;) _ gaf?n_kﬁkﬂl/ggj Lfm(k) _ Eﬁ-fnngkn/| E‘., Pﬂﬂl _ L.;L.-n_-m_?

(¢ is metrics tensor), one can present the results for the Coulomb-
like gauge A" + 9, A + 0, A% = 0 as follows
V.N. Markov,Yu.M. Pis'mak, ArXiv:hep-th/0505218]



—i0(x3 — y3)
D33k, w3, us) =

DEo(k, 3, y3) = D3B(k, 23, y3) = 0,

Im Im (1,
Dm(!jL 3, US) _ P ( )Pl(l‘ L3, U3) +L (A)/PZLA X3, ?-B)

QW[ (1+ "-“1-1{1-2('82‘1”LII — 1))? + (ay + as)?



where

—

‘o _ 2 Q- 2i k|1
Pi(k, x5, y3) = [aras — ajas(1 — e**1)] x
 [eilFl(lzat+u—T1) . il Fl(es=T+lual)) IR
—}—[{1-% e ﬂ-%ﬂ-%ﬂ _ EJ_Q?-|k|1ﬂei|k|(|$3|+|y3|) s
—I—{a.g -+ a.%ag(l _ EJ_Q?-W“')]G?-WH|11’3— Ul+lys—T]) _

—EJ.HEHH_%'[(I + {11{12(62-5|E|1' —1))* + (ay + a2)?],

—

Polk, x3,y3) = ai[l + as(as + aje®F1)]eFlzaltlul)
+£I.g[1 +ai(ag + (I-QGQ'”E'I.)}Eﬂa(|5‘[’3_1'|+|y-'3—1'|) _

_agas(ay + as) (E@|E|(|m3|+|y3—r|> N E@|£~'|(|a~.3—r|+|y.-3|)) il



The energy density Eyp of defect 1s defined as
1 R
InG(0) = 5 Trln(DypD 1 = —iTSEyp

where T" = I'dxg 1s duration of defect, and S = rdridrs. is
the area of film.

It is expressed in an explicit form in terms of polyloga-
rithm function Liy(z) [V.N. Markov,Yu.M. Pis'mak, ArXiv:
hep-th /0505218



For identical films with a; = a9 = a it holds:

Esyp =2E+ Ecus, Es = [Iny(1 + a?)—

| a’ @’
E ‘as — T L~ 9 a2 L + L
Ca 167213 . (La +1)? ] N ((a - f)g]

Here £, is an infinite constant, which can be interpreted as

selt-energy density on the plane. and E¢,. 1s an energy density

of their interaction.



The function Lig(z) is defined as

k

. o0 1 o0 g ¢ . _
L-14(:1):£1 =5 B R In(1 — e ") dk.

The force Fyp(r, a) between planes is given by

OE (1, a) T2

Faplr.a) = =——5 == =510/ @)




0,0
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-0,2- 0
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Figure 1: Function f(a) determining Casimir force between parallel planes



The force Fyop is repulsive for |a| < ag and attractive for

a| > ag, ag ~ 1.03246 (see Figure 1),

For large |a| it is the same as the usual CF between perfectly
conducting planes. 'I'he model predicts that the maximal mag-

nitude of the repulsive Fop is expected for |a| = 0.6.



For two infinitely thick parallel slabs the repulsive CE was

predicted also in [O. Kenneth et al., Phys. Rev. Lett. 89,
033001 (2002)].

Real film has a finite width, and the bulk contributions to
the CF for nonpertectly conducting slabs with widths hq, hs
are proportional to hyhs. Therefore it follows directly from the
dimensional analvsis that the bulk correction Fy, . to the CF
is of the form Fpur =~ cFoashiha/ r? where Frg. is the CF for
perfectly conducting planes and ¢ 1s a dimensionless constant,

1'his estimation can be relevant for modern experiments on the

CL.



For instance, in [G. Bressi et al.,, Phys. Rev. Lett. 88,
041804 (2002)] there were results obtained for parallel metallic
surtaces where width of layer was about A =~ 50 nm and typical
distance r between surfaces was 0.5pum < r < 3um. In that
case 3 x 107 < (h/r)? < 1072

In |G. Bressi et al., Phys. Rev. Lett. 88, 041804 (2002)]
the authors have fitted the CEF between chromium films with
function Coyg/ r. Thev claim that the value of Ce,. coincides

with known Casimir result within a 15% accuracy.



It means that bulk force can be neglected, and only surtace
effects are essential. In our model the values a > 4.8 of defect
coupling parameter a are in good agreement with results of

‘G, Bressi et al., Phys. Rev. Lett. 88, 041804 (2002)].



Interaction of film with classical cur-
rent and electromagnetic waves
Now we study the scattering of classical electromagnetic wave
on plane defect and effects generated by coupling of plane film
with a given classical 4-current.

The scattering problem is described in our approach by a ho-
mogeneous classical equation KpA, = 0 of simplified model
with @y = a. as = 0. It has a solution in the form of a plane

wave.



If one defines transmission (reflection) coefficient as a ratio
Ky = Ui ) U, (K, = U, /Uyp) of transmitted wave energy Uy
(reflected wave energy U,.) to incident wave energy Uy, |, then

direct calculations give the following result:

Ky = (1+ a.z)_lj K, = a.2(1 + ,;1,9)—1



We note the following features of reflection and transmission
coeflicients. In the limit of infinitely large defect coupling these
coefficients coincide with coefficients for a perfectly conducting
plane.

The reflection and transmission coefficients do not depend

on the incidence angle.



The classical charge and the wire with current near defect
plane are modeled by appropriately chosen 4-current .J in (3).
The mean vector potential A, generated by .J and the plane

rs = 0, with a; = a can be calculated as

OG()
¢ 51{{ ‘nl—a ﬁrg—U

A’u: Dr{ Li‘al—ﬁﬁg =0- (G)

Using notations F;. = 0,4, — OpA;, one can present electric
and magnetic fields as E' = (Fo1, Foo, Foz). H = (Foz, Fa1, Fia).



For charge e at the point (x1, zo, 23) = (0,0,1), [ > 0 the
corresponding classical 4-current is

S

u(x) = dmed(y)0(a2)d(x3 — 1)dy,

In virtue of (5) the mean vector potential A*(x) is independent
on xp and the electric field in considered system is defined by

potential

€ (1 2 €

Aolzy, 10, 23) = — — -
1,82, 73) p_ at+1py

where pp = af + 23 + (|za| +1)% p- = Ja3 + a3+ (23— 1)




The electric field E = ( Ey, By, E4) is of the form

eI a’  exs

Fo=—= — o
. PP at+1pd

) -

ex a“  ery
pP At 1pt

By =

o «.

elrs — [ ) a.ge | T3)€e (: :1?3‘ + ﬂ;)
bp = 3 RPN 3 '
P> a-+ 1 P

Here, e(x3) = x3/|x3].

o «.




We see that for x3 > 0 the field E' coincides with field gen-
erated in usual classical electrostatic by charge e placed on
distance [ from infinitely thick slab with diclectric constant
e =2a’+ 1.

Because A" (x) # 0 for = 1,2, 3. the defect generate also
a magnetic field H = (Hq, Hy, H3):

ear eaTs eal|xs] +1)

Hy = —, = —, Hy = —————.
R @+ 1)pt T (@ + 1)

It 1s an anomalous field which doesn't arise i classical electro-

statics. Its direction depends on sign of a.



In similar one can calculate the fields generated by interac-
tion of the film and charged plane x5 = [, presented by the

classical current
Ju(x) =Amoo(xs — [)dg,.
Here o is the charge density. In this case it holds:

EFi=Ey,=0=Hy=Hy=0

9
a a
Hs = 20—

Es =27mo |e(xg — 1) — E(’L&)m 21l



Thus. in considered system there is only one dependent on [

component of fields E H. 1tis Es Forl — Foo

| - €e(wy)a’
Ey =2 +1 — — .
B e ( a’+ 1 ) |
and for [ =0
B, — Q?TO'E(:I_?S)
a2 + 1

It is important, to note that anomalous fields arise because the
space parity is broken by the action (4). and they are generated

in (5) by the LPs- term of propagator Dop.



A current with density 7 flowing in the wire along the z-axis

1s modeled by
]“(1) = 475 (x5 — 5)5(:139)5;5_1

For magnetic field from (5) one obtains in region a3 > 0 the
usual results of classical electrodynamics for the current paral-
lel to infinitely thick slab with permeability p = (2a% + 1)1,
There is also an anomalous electric field E = (0, Eo, E3):

27a o
a4+ 172

o 27a |xs] +1

E = —
’ a?+1 72

] =

where 7 = (23 + (|z3| + 1)?)2.



Comparing formulac € = 2a® + 1 and p = (2a* 4+ 1)~ for
parameter a we obtain the relation e u = 1.

It holds for material of thick slab interaction of which with
point charge and current in classical electrodynamics was com-
pared with results for thin film of our model.

The speed of light in this hypothetical material is equal to
one in the vacuum. From the physical point of view, it could
be expected, because interaction of film with photon field is a
surface effect which can not generate the bulk phenomena like

decreasing the speed of light in the considered slab.



The essential property of interaction of films with classical
charge and current is the appearance ot anomalous fields. "This
fields are suppressed in respect of usual ones by factor a=! and
they vanish in case of perfectly conducting plane.

Magnetoelectric (ME) films are good candidates to detect
anomalous fields and non ideal CE. The generic example of
ME crystals is C'roO3 [16]. It is important to note that for
ME films the Lifshitz theory of CE is not relevant but thev

can be studied in our approach.



Non-planar geometry

The case of cvlindrical film.

Spep = /2 [ d*z £, 0" (2) AYOP A75(D)
where A EM vector-potential, £,,,,, — totaly antisymmetric
tensor (o123 = 1), and the defect is described with equation
O(x) =0, x = (x0, 21, 9. T3).

For cvlindrical shell placed along the x5 axis. :;z:f + x

b B

— R2

we have
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Figure 2: E,,, for real a (left) and imaginary a (right).
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The result for CE has the form

E = Eﬂfi-u + Efiﬂ.

. - M
Ed-it-‘ = D‘IERfB (\':1',) + 2 fl ({I)

Ems ("11' )

E m
/ A7 R?

+ O(1/M)

1V, Fialkovsky, V.N.Markov, Yu.M. Pis'mak, J.Phys. A
Math. Gen. 41, 075403 (2008)]



Electromagnetic fields generated by
simplest fermion defects

We consider the fermionic defect of the form

5

Srg(0, ) = [(F,0)(X + q) (T, 0)dZ

Here 2/, 70 are the Dirac spinor fields, A is a constant pa-

rameter, ¢ is a fixed 4-vectors, ¢ = q,y" (4" are the Dirac

5

camma-matrices), and we used the short hand notation for

the 4-vector: x = (xg, x1,x9, x3) = (T, T3).



Vector ¢ = (¢,0) and scalar A describe the iteraction of
current and density of Dirac field with material defect. Namely,
the zero component of vector ¢ defines a surface charge density
and space like components of vector ¢ parallel to the defect
plane describe the surface current.

The scalar A defect can be interpreted as a surface mass

term.



The interaction of vacuum fluctuations of the Dirac field
with the background generates quantum corrections to usual
classical effects.

Asvmptotics of the generated by the defect electromagnetic
fields for large and small a3 are the following

LV, Fialkovsky,V.N. Markov.Yu.M. Pis'mak, Int. J. Mod.
Phys. A 21,2601 (2006)].



If ¢ = (k,0,0,0) = ¢V, the defect generates pure electric
field Fs
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For ¢ = (0. %,0,0) = ¢'® the field is pure magnetic
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For g = (k,k,0,0) = ¢, FE, = FEy, = H, = H; =0, and

asymptotics of the fields £5, Hs are of the form
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Conclusion
The main results of our study on the CE for thin films in the
QED are the following.

We have shown that if the CF holds true for thin material
film, then an interaction of this film with the QED fields can be
modeled by photodynamic with the defect action (1) obtained
by most general assumptions consistent with locality, gauge

imvariance and renormalizability of model.



Thus, the basic principles of QED were essential in our stud-
ies of the CE. These principles make it possible to expose new
peculiarities of the physics of macroscopic objects in QED and

must be taken into account for construction of the models.



We calculated the Casimir energy of spherical films in-
teracting with quantum electromagnetic field. The result
obtained in the tramework of multiplicative renormaliza-
tion procedure depends on the 3 constant parameters.
One of them is dimensionless and i1s a coupling constant
of the sphere with photon field. If it is given, the 1/r¢-
contribution to Casimir energy is calculated exactly. The
renormalization procedure forecasts the necessarily ex-
istence of the radius immdependent and the proportional
to 15 contributions to Casimit energy described by two
parameters.



Thus, the Casimir energy appears to be non-universal
and dependent on the properties of material.

The presented approach can by applied for the problem
of stability of tullerenes and the other objects of nano-
physics.



In the framework of quantum electrodynamics we con-
sider a model with the Chern-Simons action on a two-
dimensional plane having one dimensionless parameter a
which describes properties of the material. The formula
for the energy of interaction of a neutral atom (molecule)
with fluctuations of vacuum of the photon field in the
presence of a two-dimensional plane with Chern-Simons
interaction is derived. In the limiting case a — 400 the
result coincides with the Casimir-Polder result for the
energy of interaction of a neutral atom with a perfect-
Iy conducting plane. The essential feature of the result
is the term depending on the antisymmetric part of a
dipole correlation function for finite values of the param-
eter a, we derive a criterion of its dominance in terms of
imaginary and real parts of dipole matrix elements of the
atom and the parameter a of the Chern-Simons surtace
term.



We expect quantum Hall effect systems and graphene
to be the most promising known materials for the mea-
surements of the potential derived in this paper. The
Casimir-Polder effect provides a recipe for direct mea-
surements of the parameter a in such materials, which
can be relevant tor better understanding of quantum dy-
namics in these systems. The measurements of the anti-
syminetric part of the atomic polarizability by means of
the Casimir-Polder effect can be an independent possi-
bility for study of antisymmetric parts of atomic polar-
izabilities 1 various atomic and molecular systems.
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