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1 Introduction

The formulation of quantum field theory (QFT) on the
light front (LF) uses the coordinates (P. A. M. Dirac.
Forms of relativistic dynamics. Rev. Mod. Phys. 1949.)

x± =
x0 ± x3

√
2

, x⊥ = (x1, x2) = xk,

where x0, x1, x2, x3 are Lorentz coordinates, the x+ plays
the role of time, and the LF is defined by the eq-n
x+ = 0. This formulation leads formally to a possibility
of simple description of vacuum state as the state with
minimal eigenvalue p− = 0 of the momentum operator
P− (the generator of translations in x−):
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P− =
P0 − P3√

2
, P− > 0 for p0 > 0, p2 > 0 .

In usual, equal Lorentz time quantization, the complex-
ity of the vacuum state description was the main diffi-
culty in attempts to solve nonperurbatively the Schroe-
dinger eq-n for QFT.
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This advantage of the LF quantization allows to de-
velop nonperturbative approach to calculations of mass
spectrum of bound states (with a hope to apply this
in QCD) solving the eigenvalue problem for the LF
Hamiltonian P+ = P0+P3√

2
in the Fock space on the LF

(A. M. Annenkova, V. A. Franke, E. V. Prokhvatilov.
The solution of Schroedinger equation on the light front
for Sine-Gordon model. Vestnik. Leningr. State. Uni-
versity. 1985. S. J. Brodsky, H.-C. V. Pauli, S. S. Pin-
sky. Quantum Chromodynamics and other Field The-
ories on the Light Cone. Phys. Reports. 1998.)
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The canonical formulation of field theory on the LF
is confronted with difficulties of treating zero modes of
fields in x−. For example, the kinetic term in the La-
grangian L(x) for scalar field φ(x) has the following
form in LF coordinates:

L = ∂+φ ∂−φ + · · · ,

where we write out the term with the derivative in
x+. Zero mode (p− = 0, or the field independent of
x−) drops out of this term. So the canonically conju-
gated momentum is zero, and this mode is not indepen-
dent dynamical variable, as distinct from other modes.
Along with this peculiarity one gets singularities in the
Hamiltonian at p− = 0.
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Two types of the regularization are usually applied:
(1) | p−| > ε > 0,
(2) the so called ”DLCQ” (Descretized Light Cone

Quantization) regularization (S. J. Brodsky, H.-C. V.
Pauli, S. S. Pinsky.), i.e. the cutoff in x−, |x−| 6 L,
plus periodic boundary conditions on fields.

However the (1) is Lorentz and gauge nonsymmetric,
and excludes zero modes in x− which are important for
correct description of vacuum effects.
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The DLCQ also breakes Lorentz symmetry but sup-
ports gauge invariance. The p− becomes descrete due
to periodic boundary conditions. Well separated zero
modes can be expressed in terms of other modes by
solving corresponding canonical constraints. However
for most models these constraints are too complicated,
and the problem is practically unsolvable (V. A. Franke,
Yu. V. Novozhilov, E. V. Prokhvatilov. On The Light
Cone Formulation of Nonabelian Gauge Theory. Lett.
Math. Phys. 1981) .
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The violation of Lorentz symmetry in these regular-
izations can lead to problems with the renormalization
of the theory and also to its possible nonequivalence
with usual formulation in Lorentz coordinates. In the
framework of perturbation theory it was shown that for
restoring the equivalence it is necessary to introduce
into the regularized Hamiltonian on the LF the addi-
tional terms like ”counterterms” in the renormalization
procedure (S. A. Paston, V. A. Franke. Comparison
of quantum field perturbation theory for the light front
with the theory in Lorentz coordinates. Theor. Math.
Phys. 1997, hep-th/9901110.) .
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To investigate the problem with the description of
vacuum condensates on the LF we used the well known
gauge field model in two dimensional space-time, the
QED(1+1) . This model can be transformed into the
scalar field model with nonpolynomial interaction, which
can be treated on the LF better than the original gauge
theory. As a result we have found the terms which one
must add to canonical expression for the LF QED(1+1)
Hamiltonian in order to make LF formulation equiva-
lent to one in equal Lorentz time quantization. These
terms contain all information about condensates and
depend only on zero modes.

(S. A. Paston, E. V. Prokhvatilov, V. A. Franke.
Theor. Math. Phys. 2002. hep-th/0302016. On
the construction of corrected light-front Hamiltonian for
QED2. hep-th/0011224.)
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Futhermore it was noticed that the same vacuum ef-
fects on the mass spectrum in QED(1+1) can be ap-
proximately obtained via special limiting transition to
the LF Hamiltonian from the theories on the space-like
hyperplanes close to the LF. One must go to the LF
at fixed parameter L, which confines the x− by the
inequality |x−| 6 L, and ”freeze” the limiting transi-
tion for zero modes while the L remains finite. (E. V.
Prokhvatilov, V. A. Franke. Approximate description
of QCD condensates in light cone coordinates. Sov. J.
Nucl. Phys. 1988).
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We would like to apply analogous approximate way in
Quantum Chromodynamics (QCD) as some semiphe-
nomenological way to describe vacuum effects. With
this aim we introduce gauge invariant regularization of
QCD adapted for different treating of zero and nonzero
modes. We use the lattice in ”transverse” coordinates
x1, x2 and use the unitary matrices as link variables to
describe gluon zero modes. All other fields are related
to lattice sites. Furthermore we introduce a cutoff in
p−. It is possible to give gauge invariant form to this
description as well as for the cutoff in p−.
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Until the regularization is removed Lorentz symme-
try is violated by the form of the regularization. The
vacuum state, defined as an eigen state of the P− with
minimal value p− = 0, is not uniquely defined due to
zero modes. The minimum of the P− may not corre-
spond to the minimum of the Hamiltonian P+. We take
the approximation in which the vacuum is defined as the
state minimizing the projection (i.e. the reduction) of
the Hamiltonian P+ on the eigen subspace with zero
value of the P−.
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This projection depends only on zero modes of fields
(which remain independent dynamical variables on the
LF after the above mentioned limiting transition at fi-
nite L) and looks like the Hamiltonian of lattice gauge
field theory in (2+1)-dimensions (where the x+ enters
formally like Lorentz time).

To find hadron masses we need to construct the states
with finite value of P−, using the LF Fock space basis
for nonzero modes over that vacuum.

We hope that finally Lorentz invariance can be re-
stored in the limit of removing regularization.
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2 QCD Hamiltonian in coordinates close to LF coor-

dinates

Let us start with the QCD Lagrangian in coordinates,
yµ = (y0, y1, y2, y3), approximating the LF coordinates:

y0 = x+ +
η2

2
x−, y3 = x−, y⊥ = x⊥. (1)

The limiting transition to the theory on the LF corre-
sponds to the limit η → 0 of the parameter η. In these
coordinates we have the following Lagrangian density:
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L(y) = Tr{F 2
03(y)+

∑
k=1,2

(
2F0k(y)F3k(y) + η2F 2

0k(y)
)
−

−F 2
12(y)}+ i

√
2ψ+

+(y)D0ψ+(y)+
i η2

√
2
ψ+
−(y)D0ψ−(y)+

+ i
√

2ψ+
−(y)D3ψ−(y)+i ψ+

−(y) (D⊥−m)ψ+(y)+

+ i ψ+
+(y) (D⊥ + m)ψ−(y), (2)

where Fµν(y) = ∂µAν(y)−∂νAµ(y)−ig[Aµ(y), Aν(y)],
the Aµ(y) are gluon fields, Dµ = ∂µ − igAµ(y), D⊥ =∑

k=1,2 σkDk, the σk being the Pauli matrices, the g is

coupling constant, m is the quark mass, ψ =

(
ψ+

ψ−

)
is

the quark bispinor field.
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We introduce the lattice in y1 = x1, y2 = x2, with
lattice spacing a, and in the y0 the lattice with the spac-
ing a0 (further it will tend to zero in the corresponding
transfer matrix in y0). Also we take | y3| 6 L with peri-
odic boundary conditions for fields in y3. TheA3(y) and
quark fields can be related to lattice sites, but for the
transverse gluon fields we define new special variables
in the form of the following complex N × N matrices
(for SU(N) gauge model):
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Mα(y) =
(
I + igaαÃα(y)

)
Uα(y) , α = 0, 1, 2,

a1 = a 2 = a , (3)

where theUα(y) and Ãα(y) will describe zero and nonzero
modes correspondingly. The Uα(y) are unitary N ×N
matrices, related to lattice links (y − aαeα, y) with the
eα being the unit vector along yα axis. The Ãα(y) are
the HermitianN×N matrices, related to corresponding
sites.

We define the gauge transformation law as follows:
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Ãα(y)→ Ω(y)Ãα(y) Ω+(y) ,

Uα(y)→ Ω(y)Uα(y) Ω+(y − aαeα) , (4)

where the Ω(y) is the matrix of gauge transformation.
For the Mα(y) the transformation is

Mα(y)→ Ω(y)Mα(y) Ω+(y − aαeα).
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Let us define the operator D3 by the following equal-
ities:

D3Ãα(y) = ∂3Ãα(y)− ig
[
A3(y), Ãα(y)

]
,

D3Uα(y) = ∂3Uα(y)−igA3(y)Uα(y)+igUα(y)A3(y−aαeα),

D3Mα(y) = ∂3Mα(y)−igA3(y)Mα(y)+igMα(y)A3(y−aαeα),

D3ψ(y) =
(
∂3 − igA3(y)

)
ψ(y). (5)
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Now we reduce the definition of the matrix Uα(y) by
the following gauge invariant condition:

D3Uα(y) = 0, (6)

and for the matrices Ãα(y) we require the exclusion
from them the part satisfying D3Ãα(y) = 0. In the
gauge A3 = 0 these conditions are nothing but the sep-
aration of zero and nonzero Fourier modes of matrices
Mα(y) in y3. Analogous definitions can be taken for
quark fields.
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If we require for Uα(y) in the limit a, a0 → 0 in the
gauge A3 = 0 that

Uα(y)→ exp
(
igaαAα0(y)

)
→ I + igaαAα 0(y) ,

where the Aα0(y) is zero mode of the field Aα(y) of the
original theory, while for the Ãα(y) the coincidence with
nonzero mode part of the Aα(y), we get in any gauge
for matrices Mα(y) the following correspondence:

Mα(y)→ I + igaαAα(y) + O
(

(aαg)2
)
. (7)

This allows to define the lattice analog of field strength
tensor Fµν(y) :
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G12(y) = − 1

ga2

(
M1(y)M2(y−ae1)−M2(y)M1(y−ae2)

)
,

G0k(y) = − 1

gaa0

(
Mk(y)M0(y−aek)−M0(y)Mk(y−a0e0)

)
,

k = 1, 2 ,

G3α(y) =
1

gaα
D3Mα(y). (8)

At a, a0 → 0 we get Gµν(y)→ iFµν(y).
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We have the following transformation law under gauge
transformations:

G3α(y)→ Ω(y)G3α(y) Ω+(y − aαeα),

Gαβ(y)→ Ω(y)Gαβ(y) Ω+(y − aαeα − aβeβ). (9)

Further, we can introduce the gauge invariant analog
of the cutoff in p3, using the cutoff in the eigen values
q3 of the operator D3: | q3| 6 Λ.
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The action is:

S(η) =
∑
y⊥, y0

∫ L

−L
dy3 a2a0

{
Tr

(
G+

03(y)G03(y)+

+η2G+
0k(y)G0k(y)+G+

0k(y)G3k(y)+G+
3k(y)G0k(y)−

−G+
12(y)G12(y)

)
− i

a0

√
2

(
ψ+

+(y)M0(y)ψ+(y−a0e0)−h.c.
)
−

− iη2

2
√

2 a0

(
ψ+
−(y)M0(y)ψ−(y− a0e0)−h.c.

)
+

+i
√

2ψ+
−(y)D3(y)ψ−(y)− i

2a

(
ψ+
−(y)Mk(y)σkψ+(y−aek)+

+ψ+
+(y)Mk(y)σkψ−(y − aek)− h.c.

)
−

− im
(
ψ+
−(y)ψ+(y)− ψ+

+(y)ψ−(y)
)}

. (10)
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In the following we take the abbreviated way of writ-
ing the arguments of our fields: for the field in the
integration (or summation) point y we do not write
the argument, and for the field in the translated point
y ± aαeα we write only the displacement, for example:
f (y) = f, f (y ± aαeα) = f (±aα).
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To ”freeze” the limiting transition to the LF for zero
modes and keep them as independent dynamical vari-
ables we fix the parameter η at some finite value η0 in
corresponding terms of the action:

S(η, η0) = S(η) + 2L(η2
0−η2)

∑
y⊥, y0

{
1

g2a0
Tr

{(
UkU0(−ak)−

−U0Uk(−a0)
)(
U+

0 (−ak)U+
k −U

+
k (−a0)U

+
0

)}
−

− i

2
√

2a0

(
ψ+
−, 0U0ψ−, 0(y − a0)− h.c.

)}
. (11)

Here the ψ−,0 is zero mode of quark field.
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To construct the transfer matrix in y0 and the Hamil-
tonian (M. Creutz. Gauge fixing, the transfer matrix,
and confinement on a lattice. Phys. Rev. D. 1977) we
apply the gauge U0 = I, A3 = 0.

Notice that A3 = 0, in principle, is not possible for
general class of fields with periodic boundary conditions
in y3 . But in the case of QED(1+1) it was noticed that
we can get good semiphenomenological description even
with so reduced class of fields. Now we consider the
same variant for simplicity.

The action takes the following form:
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SG(η) =
∑
y⊥, y0

∫ L

−L
dy3 a2a0 Tr

{(
∂3Ã0

)2 −
− i

gaa0
∂ 3Ãk

[(
I + iga Ãk

) (
I+ iga0UkÃ0(−ak)U+

k

)
−

−
(
I + iga0Ã0

) (
I + igaÃk(−a0)

)
Uk(−a0)U

+
k −h.c.

]
+

+
η2

g2a2a2
0

((
I+g2a2

0UkÃ
2
0(−ak)U−1

k

)(
I+g2a2Ã2

k

)
−

−
[
UkU

+
k (−a0)

(
I−igaÃk(−a0)

)(
I−igaÃ0(−a0)

)
(
I+igaÃk

)(
I+ iga0UkÃ0(−ak)U+

k

)
+ h.c.

]
+

+
(
I+g2a2Ã2

k(−a0)
)(
I+g2a2

0Ã
2
0

))
−G+

12G12

}
+

+ 2L(η2
0−η2)

∑
y⊥, y0

{
1

g2a0
Tr

{
2−
(
UkU

+
k (−a0)−h.c.

)}}
.(12)

The product UkU
+
k (−a0), entering this expression, cor-

responds to the elementary translation in time on the
lattice. This is used in the procedure of the construc-
tion of the transfer matrix and the Hamiltonian in the
limit a0 → 0 by the method of the paper M. Creutz:
Gauge fixing, the transfer matrix, and confinement on
a lattice (Phys. Rev. D. 1977).
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The gluon part of the Hamiltonian turns out to be:

HG =
∑
y⊥, k

{
g2

4Lη2
0

(
πak −

1

2

∫ L

−L
dy3
(
fabcΠ̃b

kÃ
c
k

))2

+

+
1

2 η2a2

∫ L

−L
dy3(Π̃a

k − a2∂3Ã
a
k)

2 +

+

∫ L

−L
dy3

(
Π̃a
k Tr

[
λa
(
Ã0 − UkÃ0(−ak)U−1

k

a
−

−ig
[
Ãk, (Ã0 + UkÃ0(−ak)U−1

k )
])])

−

−a
2

2
(∂3Ã

a
0)2 + a2 Tr

(
G+

12G12

)}
+ O(η2). (13)
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Here Π̃a
k and Ãa

k = Tr(λaÃk) are canonically con-
jugated pairs of variables, λa are the SU(N) analog of
Gell-Mann matrices:[

λa

2
,
λb

2

]
= ifabc

λc

2
,

fabc are SU(N) structure constants
(a, b, c = 1, ..., N 2 − 1),

[Uk ′(y
′), πak(y)] = δkk ′δy⊥y⊥′

λa

2
Uk(y) ,

[ πak(y), πbk ′(y
′)] = i δkk ′δy⊥y⊥′f

abcπck(y) . (14)
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In the part of the action depending on quark fields
unitary matrices of gluon zero modes enter this part
without derivatives in time. So we need no additonal
lattice in time, and can construct this part of the Hamil-
tonian by usual canonical formalism. Let us normalize
fermion variables as follows:

χ = 21/4ψ+ ,

ξ = 2−1/4η

(
ψ− −

1

2L

∫ L

−L
dy3ψ−

)
,

ξ0 = 2−1/4 a η0√
2L

∫ L

−L
dy3ψ− .

Then we get:
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Sψ = a2
∑
y⊥

∫
dy0

∫ L

−L
dy3

{
iχ+

+D0χ+iξ+D0ξ+

+
iη

a
√

2Lη0

ξ+
0 D0ξ+

iη

a
√

2Lη0

ξ+D0ξ0+
i

2La2
ξ+
0 ∂0ξ0+

+
2i

η2
ξ+∂3ξ−

i

2a

((
ξ+

η
+

ξ+
0√

2Lη0a

)
Mkσkχ(−ak)− h.c.

)
−

−
(
χ+Mkσk

(
ξ(−ak)
η

+
ξ0(−ak)√

2Lη0a

)
− h.c.

)
−

− im
((

ξ+

η
+

ξ+
0√

2Lη0a

)
χ− h.c.

)}
, (15)

and the corresponding part of the Hamiltonian takes
the following form:
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Hψ = a2
∑
y⊥

∫ L

−L
dy3

{
−g
(
χ+

+Ã0χ+ξ+Ã0ξ+
η

a
√

2Lη0

ξ+
0 Ã0ξ+

+
η

a
√

2Lη0

ξ+Ã0ξ0

)
− i

2a

((
ξ+

η
+

ξ+
0√

2Lη0a

)
Mkσkχ(−ak)−

−h.c.
)
−
(
χ+Mkσk

(
ξ(−ak)
η

+
ξ0(−ak)√

2Lη0a

)
− h.c.

)
−

− im
((

ξ+

η
+

ξ+
0√

2Lη0a

)
χ− h.c.

)}
. (16)

Equating the variation of total Hamiltonian in the Ã0

to zero, we obtain the following constraint:
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a2∂ 2
3 Ã

a
0 = Tr

{
λa
(
U−1
k (ak) Π̃k(ak)Uk(ak)− Π̃k

a
−

− ig
2

[
Ãk, Π̃k

]
− ig

2
U−1
k (ak)

[
Ãk, Π̃k

]
Uk(ak)

)}
+

+
ga2

2

(
χ+λaχ+ ξ+λaξ+

η√
2La η0

(
ξ+
0 λ

aξ+h.c.
))
.(17)

This equation allows to express the Ã0 through other
variables. Now we can write the full Hamiltonian as
follows :
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H =
∑
y⊥, k

{
g2

4Lη2
0

(
πak −

1

2

∫ L

−L
dy3
(
fabcΠ̃b

kÃ
c
k

))2

+

+a2

∫ L

−L
dy3

[
1

2 η2a4
(Π̃a

k − a2∂3Ã
a
k)

2 +

+
1

2

(
∂3Ã

a
0

)2
+ Tr

(
G+

12G12

)
− 2i

η2
ξ+∂3ξ +

+
i

2a

((
ξ+

η
+

ξ+
0√

2Lη0a

)
Mkσkχ(−ak)− h.c.

)
+

+

(
χ+Mkσk

(
ξ(−ak)
η

+
ξ0(−ak)√

2Lη0a

)
− h.c.

)
+

+ im

((
ξ+

η
+

ξ+
0√

2Lη0a

)
χ− h.c.

)]}
+O(η2), (18)

where the quantity ∂3Ã
a
0 must be defined by the con-

straint (17) obtained above.
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Furthermore all fields must be expressed in terms of
their Fourier modes in y3 (which are true independent
variables):

Ãa
k =

1

a
√

2L

∑
n6=0

aan, k + aa+−n, k√
2 |pn|

e−ipny
3
,

Π̃a
k =
−ia√

2L

∑
n6=0

aan, k − aa+−n, k√
2

√
|pn| e−ipny

3
,

χir =
1

a
√

2L

∑
n

χinr e
−ipny3

, ξir =
1

a
√

2L

∑
n6=0

ξinr e
−ipny3

, (19)

pn = πn
L , n = 0,±1,±2, ...
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Nonzero canonical (anti)commutators are[
aan, k(y) , ab+

n
′
, k
′(y
′
)
]

= δkk′ δab δnn′ δy⊥y⊥′,{
χinr(y), χj+

n
′
r
′(y
′)
}

=
{
ξinr(y), ξj+

n
′
r
′(y
′)
}

= δnn′ δij δrr′ δy⊥y⊥′. (20)

One has to add to these relations also the relations for
gluon zero modes.
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3 Limiting transition to the LF QCD Hamiltonian

To consider the LF limit (η → 0) for the obtained
Hamiltonian let us notice that at fixed values of the
parameters L and a one can decompose this Hamilto-
nian in powers of η as follows:

H =
1

η2
H0 +

1

η
H1 + H2 + O(η2).

Having this decomposition one can construct the analog
of stationary perturbation theory in η:

(H−E)f = 0, f = f0+ηf1+· · · , E =
1

η2
E0+

1

η
E1+E2+O(η). (21)

Notice that the f0 correspond to states in the limit
η → 0, i.e. on the LF. If we require the finiteness of the
energy E in the limit η → 0, we must put E0 = E1 = 0.
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In lowest and next two orders in η one has the follow-
ing eq-ns:

H0f0 = 0, H0f1+H1f0 = 0, H0f2+H1f1+(H2−E2)f0 = 0.

Let us substitute into these eq-ns the explicit expres-
sions for corresponding pieces of the Hamiltonian.

The H0 can be written in terms of the Fourier modes
as follows:
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H0 =
∑
y⊥

∫ L

−L
dy3

{
1

2a2

(
Π̃a
k−a2∂3Ã

a
k

)2

−2ia2ξ+∂3ξ

}
=

= 2
∑
y⊥

∑
n>0

{
|pn|
(∑

a

aa+
−n,k a

a
−n,k+

∑
i

(
ξi+−n ξ

i
−n+ξin ξ

i+
n

))}
, (22)

where we throw out the constant.
Therefore the subspace of states {f0} can be defined

by the following eq-ns:

aa−n,kf0 = ξi−nf0 = ξi+n f0 = 0 , n > 0. (23)

So the {f0} play the role of ”vacuum” w.r.t. these
modes.
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In the next order in η we get

f1 = −(1− P0)H
−1
0 (1− P0)H1f0.

For the remaining eq-n it is sufficient to consider the
projection on the subspace {f0}. Denoting the projec-
tor by P0, we obtain the following equality:

P0

(
H2 −H1(1− P0)H

−1
0 (1− P0)H1

)
f0 = E2f0.

The equation of this form can be considered as the
eigenvalue problem for the LF Hamiltonian because the
E2 define the eigenvalues in the limit η → 0. Thus we
can take for the LF Hamiltonian the following expres-
sion:
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P+ = P0

(
H2 −H1(1− P0)H

−1
0 (1− P0)H1

)
P0.

In this expression the dependence on variables aa−n,k,

ξi−n, ξ
i+
n (n > 0) can be eliminated by using the eq-ns

aa−n,kf0 = ξi−nf0 = ξi+n f0 = 0 , n > 0

(because P0 is the projector on {f0}).
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In result we obtain the following expression depend-
ing only on operators a ank, a

a+

nk , b
i
nr, b

i+
nr, d

i
nr, d

i+
nr, (n >

0), Uk, π
a
k, χ0, ξ0:

P+ =
∑
x⊥

∫ L

−L
dx−

{
g2

8L2η2
0

(
πak−

i

2

∑
n>0

(
fabca+b

nk a
c
nk

))2

+

+
a2

2

(
F a

+−

)2

+ a2Tr
(
GLF+

12 GLF
12

)
+

+
g2

8L

(
5N − 2− 4

N

)(∑
n>0

1

pn

)
Tr
(
ALF
k ALF

k

)}
+
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+
∑
x⊥

∫ L

−L
dx−

{
i

2
√

2Lη0

(
ξ+
0

(
I+igaALF

k

)
Ukσkχ(−ak)+

+χ+
(
I + igaALF

k

)
Ukσkξ0(−ak)− h.c.

)
+

+
ima

2
√

2Lη0

([
ξ+
0 , χ

]
−
[
χ+, ξ0

])
−

− i
8

(
χ+(−ak′)σk′ U−1

k′

(
I − igaALF

k′

)
−

−χ+(ak′)
(
I+ igaALF

k′ (ak′)
)
Uk′(ak′)σk′ + 2maχ+

)

∂−1
−

((
I + igaALF

k

)
Ukσkχ(−ak)−

−σkU−1
k (ak)

(
I−igaALF

k (ak)
)
χ(ak)+2maχ

)
+

+

(
g2
(
N − 1

N

)
16La2

∑
m>0

1

pm

)(∑
n6=m

χ+
nχn
pm−n

+

+

(∑
n>m

+
∑
n<−m

)
χ+
nχn
pn

)}
, (24)

where
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F a
+− = Tr

(
λaF+−

)
,

F+− =
1

a

(
ALF
k −

(
U−1
k ALF

k Uk

)
(ak)

)
−

−ig
2
∂−1
−

([
∂−A

LF
k , ALF

k

]
+

+
[
∂−
(
U−1
k ALF

k Uk
)
, U−1

k ALF
k Uk

]
(ak)−χ+λaχ

λa

2

)
, (25)

GLF
12 (x) = − 1

ga2

((
I + igaALF

1

)
U1

(
I + igaALF

2 (−a1)
)
U2(−a1)−

(
1↔ 2

))
, (26)
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ALF
k (x) =

1

a
√

2L

∑
n>0

(
aank(x

⊥)e−ipnx
−

√
2pn

+h.c.

)
λa

2
, (27)

χir(x) =
1

a
√

2L

∑
n>0

(
b inr(x

⊥) e−ipnx
−
+d i

+

nr(x
⊥) eipnx

−
)

+

+
χ0

a
√

2L
. (28)

The divergent sums present in this expression for the
Hamiltonian must be regularized by the condition
p− = pn = πn

L 6 Λ.
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The momentum operator P− in terms of variables
a ank, a

a+

nk , b
i
nr, b

i+
nr, d

i
nr, d

i+
nr has the following form:

P− =
∑
x⊥

∑
n>0

pn

(
a a

+

nka
a
nk+b i

+

nrb
i
nr+d

i+

nrd
i
nr

)
> 0. (29)

The operators a ank, a
a+

nk , b
i
nr, b

i+
nr, d

i
nr, d

i+
nr are the an-

nihilation and creation operators in the Fock space with
the ”vacuum” corresponding to P− = 0. Therefore the
projection of the Hamiltonian P+ onto the subspace
with P− = 0 can be easily found:
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(P+)0̃ =
∑
x⊥

(
g2

4Lη2
0

πakπ
a
k+

4L

g2a2
ReTr

(
I−U12

))
+

+
i

2a η0

(
ξ+
0 Ukσkχ0(−ak) + χ+

0 Ukσkξ0(−ak) +

+ma
[
ξ+
0 , χ0

]
− h.c.

)
. (30)

This expression looks like a Hamiltonian of (2+1)-dimen-
sional gauge theory with the lattice in the space and
continuous time x+. One can try to minimize this
Hamiltonian to define the vacuum. Analogously one
can try to define the states with finite momentum p−
using the creation operators in the abovementioned LF
Fock space.
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4 Conclusion

An attempt to construct LF Hamiltonian with vacuum
parameters like condensates being taken into account
is presented here for QCD. The way we choose looks
as semiphenomenological approach suggested by previ-
ous detailed consideration of the problem in QED(1+1).
This way defines the modification of the theory on the
LF at finite value of the ”LF infrared” regularization pa-
rameter L (|x−| ≤ L), assuming that this modification
does correct the spectrum of mass, introducing vacuum
effects in it’s description. We relate that modification
with zero modes of fields in x−. These modes become
in this way independent dynamical variables on the LF.
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The regularization and the separation of zero modes
from the other modes introduces Lorentz nonsymme-
try into the formulation of the theory at finite L. To
keep gauge invariance a generalization of the notion
of zero mode is given in a gauge invariant way. Also
we introduce gauge invariant cutoff in the LC momen-
tum p− (that becomes possible in lattice formulation in
transversal to LC coordinates).

We remain with the questions about the possibility of
the renormalization of this model in the limit of remov-
ing the regularization and the possibility to compare
this model with usual formulation in Lorentz coordi-
nates at least in perturbation theory in coupling con-
stant. In this pertubative way we can try to check the
restoration of Lorentz symmetry in the limit of the re-
moving the regularization.
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