
Helicity and the turbulent Prandtl number
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Introduction to Fully Developed Turbulence

Fully Developed Turbulence

Fully developed turbulence → Turbulence at very high Reynolds numbers,
some of the possible symmetries are restored in statistical sense

I Reynolds number

R =
LV

ν
, (1)

ν is a (kinematic) viscosity,
L is a characteristic scale,
V is a characteristic velocity of the flow

I Stochastic Navier-Stokes equation
. . . fluctuating part of velocity field. . .

∂tv + v · ∇v = −∇p + ν∇2v, (2)

∇ · v = 0. (3)

p is a pressure and ν is an aforementioned viscosity
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Introduction to Helicity

Helicity

Helicity → Spatial parity violation or broken mirror symmetry

I Definition, fluid dynamics

H =

∫
v · (∇× v)d3r, (4)

where v is the velocity field

I Describes “real” world of fluid dynamics

I Example: earth’s athmosphere, ocean currents

I Important mathematical model
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Introduction to Turbulent Prandtl Number

Turbulent Prandtl Number

Turbulent Prandtl number Prt

I Problems of temperature diffusion (heat transfer)

I Non-dimensional parameter of turbulent flow

I Defined as ratio of the turbulent viscosity to the coefficient of the
turbulent thermal diffusivity

I From experimental data: Prt ∈ 〈0.7, 0.9〉
I Does not depend on the individual properties of the fluid
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Formulation of the Model

Stochastic formulation of the model

Advection of a passive scalar field is described by the equation

∂tφ+ (v · ∂)φ = u0ν0∆φ+ f (5)

u0 is inverse Prandtl number, ν0 is kinematical viscosity, f is a random
force (explicit form of the force is not essential), v means incompressible
velocity field (for this model)
Stochastic Navier-Stokes equation for velocity field

∂tv + (v · ∂)v = ν0∆v − ∂P + f v (6)

where P is a pressure and correlation function has the following form

〈f v
i (x)f v

j (x ′)〉 = δ(t − t ′)(2π)−d

∫
dkPij (k)df (k)× exp[ik(x− x′)] (7)

df is some function of k ≡ |k| and the model parameters
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Formulation of the Model

Stochastic formulation of the model

Tensor characteristics of the flow are given by the term

Pij (k) = δij − ki kj/k2 (8)

which means incompressible isotropic velocity field
To introduce spatial parity violation or helicity into the model, we need to
modificate tensor projector Pij (k)→ Rij (k) to the form

Rij (k) = δij − ki kj/k2 + iρ εijl kl/k (9)

where ρ means helicity parameter, amount of helicity in the system. ρ = 0
means non helical system, ρ = 1 means maximum helicity in the system
εijl is completely antisymmetric Levi-Civita’s tensor of rank 3
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Formulation of the Model

Field theoretic formulation of the model

The stochastic model is equivalent to the quantum field model with
double set of fields

Φ = {v, φ, v′, φ′} (10)

and action functional of the model

S(Φ) = v′Df v
′/2 + v′[−∂tv + ν0∆v − (v · ∂)v]

+ φ′[−∂tφ+ ν0u0∆φ− (v · ∂)φ] (11)

where Df is the correlation function of the random force. Necessary
integrations over {t, x} and summations over vector indices are implied
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Formulation of the Model

Field theoretic formulation of the model

Propagators

〈vi (k)vj (k)〉0 =
g0ν

3
0 k4−d−2εRij (k)

(−iω + ν0k2)(iω + ν0k2)
, (12)

〈vi (k)v ′j (k)〉0 =
Pij (k)

−iω + ν0k2
, (13)

〈φ(k)φ′(k)〉0 =
1

−iω + ν0u0k2
(14)

Vertices

−v′(v · ∂)v = v ′iVijsvj vs/2 with Vijs = i(kjδis + ksδij ), (15)

−φ′(v · ∂)φ = φ′Vi viφ with Vi = iki (16)
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Analysis of the Model

Feynman diagrams, one-loop approximation

Figure: Feynman diagrams in one-loop approximation. Self energy operators Σφ′φ

and Σv ′v .
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Analysis of the Model

Feynman diagrams, two-loop approximation

Figure: Feynman diagrams in two-loop approximation. Self energy operators Σφ′φ

and Σv ′v .
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Analysis of the Model

Renormalization constants

Divergences are present only in the one-irreducible functions 〈φ′φ〉 and
〈v ′v〉 thus we need only two independent renormalization constants
Renormalized action functional

SR(Φ) = v′Df v
′/2 + v′[−∂tv + νZν∆v − (v · ∂)v]

+ φ′[−∂tφ+ νuZκ∆φ− (v · ∂)φ] (17)

By multiplicative renormalization of the parameters of the model we obtain

ν0 = νZν , g0 = gµ2εZg , u0 = uZu (18)

with two independent renormalization constants Zν and Zκ

Zu = ZκZ−1
ν , Zg = Z−3

ν (19)
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Analysis of the Model

Renormalization constants

Renormalization constants have the form of the Laurent expansion
1+poles in ε, (MS scheme)

Z = 1 +
∞∑

k=1

ak (g , u)ε−k = 1 +
∞∑

n=1

gn

n∑
k=1

ankε
−k (20)

For Zν the following expression was obtained

Zν = 1 +
a

(ν)
11 g

ε
+ O(g 2), a

(ν)
11 = −(d − 1)S̄d

8(d + 2)
, S̄d ≡

Sd

(2π)d
(21)

where Sd is the area of the d-dimensional sphere
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Analysis of the Model

RG functions

The RG representation for response functions

Γvv ′(k, ω = 0) = ¯νk2Rv (s = 1, ḡ), (22)

Γφφ′(k, ω = 0) = ¯uνk2Rφ(s = 1, ḡ , ū), (23)

(24)

ḡ = ḡ(s, g), ν̄ = ν̄(s, g , ν) and ū = ū(s, g , u) are invariant variables and
satisfying RG equations of the form

[−s∂s + βg∂g + βu∂u − γνν∂ν ]b(s, g , u) = 0 (25)

The RG functions are defined as follows

βg ≡ µ∂µ|0g = (−2ε+ 3γν), βu ≡ µ∂µ|0u = u(γκ − γν), (26)

γν(g) ≡ µ∂µ|0lnZν , γκ(g , u) ≡ µ∂µ|0lnZκ (27)
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Results

Effective inverse Prandtl number

Expression for the effective inverse Prandtl number predicted by RG
representation

ueff = u∗
Rφ(s = 1, g∗, u∗)

Rv (s = 1, g∗)
(28)

The formulae for ueff is universal and in the inertial range does not depend
on the renormalization scheme
An iterative solution yields

u∗ = u
(1)
∗ + u

(2)
∗ ε+O(ε2) (29)

where

u
(1)
∗ [1 + u

(1)
∗ ] =

2(d + 2)

d
(30)

Two-loop correction of the fixed point

u
(2)
∗ =

2(d + 2)

d [1 + 2u
(1)
∗ ]

[
λ− 128(d + 2)2

3(d − 1)2
B(u

(1)
∗ )

]
(31)
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Results

Effective inverse Prandtl number in two-loop approximation

The two-loop approximation for the inverse turbulent Prandtl number
L. Ts. Adzhemyan, J. Honkonen, T. L. Kim and L. Sladkoff, Phys. Rev. E 71, 056311, (2005)

ueff = u
(1)
∗

(
1 + ε

{
1 + u

(1)
∗

1 + 2u
(1)
∗

[
λ− 128(d + 2)2

3(d − 1)2
B(u

(1)
∗ )

]

+
(2π)d

Sd

8(d + 2)

3(d − 1)
(av − aφ)

})
(32)

where av and aφ are integral functions of k
λ for helicity system has the value

λ = −1.101 + 0.743ρ2 (33)

and numerical value of B(u
(1)
∗ ) for d = 3 is

B(u
(1)
∗ ) =

8∑
i−1

bi = −0.00443204 + 0.00382271ρ2 (34)
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Results

Effective inverse Prandtl number in two-loop approximation

Two-loop result for the inverse turbulent Prandtl number

ueff = u
(1)
∗ (1 + 0.00893ε) + O(ε2) (35)

for non-helical system.
Behaviour of the turbulent Prandtl number on the parameter of helicity
could be seen in the end of presentation
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Results

Turbulent Prandtl number

Interval of experimentally obtained values for Prandtl number
A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of Trubulence, (1971)

L. P. Chua and R. A. Antonia, Int. J. Heat Mass Transfer 33, 331 (1990)

K. A. Chang and E. A. Cowen, J. Eng. Mech. 128, 1082 (2002)

Prt ∈ 〈0.7, 0.9〉 (36)

Two-loop value of the turbulent Prandtl number for d = 3

Prt = Pr
(1)
t + Pr

(2)
t = 0.7179− 0.0128 = 0.7051 (37)

Two-loop contribution to Prt is “only” about 2% and it has opposite sign
with respect to the one-loop approximation.
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Results

Turbulent Prandtl number

Figure: Behaviour of turbulent Prandtl number under the influence of helicity
parameter ρ. Absolute value, |ρ|.
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Conclusion

Conclusion

I The model of turbulent mixing of a passive scalar quantity in fully
developed turbulence was studied

I The field theoretic and renormalization group approach was used

I The two-loop approximation of a corresponding expansion theory was
considered

I Stable Kolmogorov regime of the model was found

I Turbulent Prandtl number and its two-loop contribution was found
and compared to the one-loop approximation

I Two-loop approximation of the turbulent Prandtl number under the
influence of helicity was analyzed
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