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1 Introduction

Tetrad formalism (called also ”frame formalism”) is widely adopted for elaboration of
consistent quantum theory of gravitation. Orthonormal tetrad fields are used instead of
metric tensor in this formalism. Canonical approach to quantization is of greatest utility
here.

In this pedagogical notes we set out the canonical method for gravitational theory in
tetrad formalism. We introduce, firstly, the tetrad fields formalism in usual form and then
proceed, by means of canonical transformation, to new variables, which are applicable in
the so-called ”loop theory of gravity”, which is currently being developed.

The present notes may be regard as the sequel to ”Quantization of gravitation I.
Metric tensor approach” by the same authors. Cross references are denoted by letters
"MT” (e. g. reference (MT10) means formula (10) of the above named notes).

2 The canonical tetrad formalism
Further we use the following notation:
w,..=0,1,23, ADB,.=0123 ik..=123 ab,.. =123, (1)

A, B,...,a,b,... are the tetrad indices; u,v,...,%, k,... are coordinate indices; we take in

brackets a concrete numerical value of the tetrad index (e.g. (0)), and do not do this for

that of a coordinate index. In the framework of the tetrad formalism one introduces at

each space-time point z* four mutually orthogonal' normalized vectors €’y (z), forming a

local basis in the space tangent to the space-time at that point. The index A numbers

vectors, and the index p numbers their components in usual coordinate representation.
The conditions of the orthonormalizability have the form:

!4 (2) g ()¢5 (2) = . @
where the n4p is Lorentz metric tensor;
nap = diag(—1,1,1,1). (3)

It is assumed that the vectors e/{(x) are linearly independent at each point (z), i. e. that

det (¢ (2)) 0. (4)
Therefore it is possible to introduce the quantities e’j(x), taking
ep (z)el(z) = 0, (5)
and hence,
ey (v)elg(z) = 0. (6)
According to (2), (5),
9w () = €, (z)nape, (x). (7)

'We use here and in the following the term ”orthogonal” in the sense of pseudoriemannian fourdimen-
sional metric.



The set of the four vectors introduced at each point is called pseudo-orthogonal tetrad (or
vierbein), and the quantities e/} and e;‘ are called frame parameters or tetrads. Apply-
ing the tetrad formalism, one considers frame parameters e;‘(x) as dynamical variables,
describing the gravitational field, while the metric g, (x) is to be a function of those
variables (according to (7)).

To define the theory the expression (7) for the g,, is substituted into the action of
the gravitational field. Varying the obtained action w. r. t. the e;‘(x), one gets the field
equations, equivalent to Einstein equations. We get the theory, invariant under two groups
of local transformations: the group of coordinate transformations, at which the vectors,

referred to coordinate basis, transform in usual way

o'+ ox”
o) = G, d(ah) = a(a) )
while the frame parameters transform under the rule
! / 8 ,” / a v
eA) = G, gla) = el@)g )

and the group of local Lorentz transformations, at which the vectors, referred to the tetrad
basis, change under the formulas

A

a4 (2) =wp(@)a(z),  ay(w) = ap(@)w P a(2) (10)

and the frame parameters transform in accord with the equalities

e;LA(:E) = wAB(x)ef(x), (11)
ef(x) = eh(z)w P a(z)a” (@) (12)

Here the w”(z) is a matrix of Lorentz transformation, i. e. such a matrix that
napw’ p(x)w” 5 () = npp. (13)

That’s why in accord with the (7), the metric g,, does not change under Lorentz trans-
formations (11), (12).

Using the parameters el‘}, e’y , it is possible to transform the vectors, referred to the
coordinates basis, into the vectors, referred to tetrad basis:

at = eﬁa", as = eha,, a' =ehat, ay = eﬁaA. (14)
Vectors, connected by such relations, are considered as different representations of the
same vector.

It is also possible to define tensors with the indices, referred to coordinates or tetrad
basis. Such a tensor Tj,f‘_'.'_'g‘ ______ transforms w. r. t. every index like the corresponding vector.
With the help of the parameters e;‘, e} it is possible to change the indices of tensors (like
of the vectors: A to u and u to A).

Analogously to covariant derivatives, referred to coordinate basis,

V.o = 0,a% + Ffjﬁaﬁ, (15)
Vo = 0y, — aﬁFﬁa, (16)



one can introduce the covariant derivatives of the vectors, referred to the tetrad basis:
VuaA = 8MaA + AMABCLB, Vyas =004 — aBAuBA. (17)
Accordingly the covariant derivative of the tensor is defined by the rule

VuTig = QT + A pTRg .+

0T — . = Thg A g — =Ty 5Ty — ... (18)

The connection A,”p is chosen to be determined by the following relation:

V. (e)a") = e)V,a", (19)
therefore
V,en =0, (20)
i e.
Ouer + A, pel — e F)‘ =0, (21)
hence,
A s = Ty el — (Oue)) e = exT), e + e duey (22)
and
T, = eAA A peB +e)d,elt. (23)

From the usual expression for the I},

1
Fl/\tll = _igw(augw + 0v9on — Opguv) (24)
and the equalities (7), (22), (23) it is possible to derive the relation
Auap =napAL" s = —napSinel + nepSpneh — e nEDeASaﬂeBa (25)
where
1
Shp = 3 (Onel — Opel)) . (26)

The transformation law of the AMA g under the frame transformations is found from
the requirement

V;La'A = V;L(wABaB) = w'pV,a” (27)
and has the form
Ay = wAp AP ()P 4w p0, (). (25)
As follows from (25)
Ayap = —A.BA, (29)



in virtue of that the A, 45 can be decomposed in generators of Lorentz group:
A p(z) = A% ()T, s, (30)

where a = 1,2, ...,6, and the T,z do not depend on the z*.

The complete group of the symmetry has 10 local parameters (the 4 functions of the
coordinate transformation and the 6 parameters of Lorentz transformation). Therefore
it is necessary to introduce 10 extra conditions, fixing this arbitrariness. Of course, it
is possible to remove at first only a part of the arbitrariness. We will use this in the
construction of the canonical formalism for that theory. We restrict partly the choice of
tetrads, connecting the tetrads with the coordinate system by the condition

e =", (31)

where the n* is a normal to the surface x°

follows from (31) that

= const at the given point. Because n; = 0 it

el = eay = €4 Guwn” = €4 Guwe(o) = Nao) = 0. (32)
Therefore
ed = 0. (33)

In fixed coordinate system one has a freedom to perform local O(3) — transformations of
tetrads. Under the change of coordinates the tetrads also change so that the conditions
(31), (33) always hold. At the given change of coordinates the change of the tetrads is
defined up to O(3) — transformations. The remaining group of all transformations is a
semi-direct product of coordinate group onto O(3) — tetrad group. Since the conditions
(31), (33) do not restrict the metric g,,, these conditions do not violate the equivalence
of classical theory in terms of frame parameters and the theory in terms of metric tensor.
According to (MT86), (MT87)

nk 1
N; = _5ikﬁa N = 0 (34)

hence, (3-dimensional coordinate indices are lifted up and pull down with the help of 3%
and 5zk)

LA T S S (35)
A A
1 NF
0 _ ko _
n'=on N (36)
Thus, in accord with the (31), (33), (36)

1 ., N

e(()U) = N’ 62 = 07 6(0) = - N ) (37)

ieft = 8t (38)



or

e?o)e(()o) +eded =1,
elyyel” + eletd =0,
eéo)eéo) +eles =0,

eéo)e,go) +elel = dr.

According the (37) €2 = 0. Therefore eq-ns (39) and (40) take the form

6?0)65]0) = 17
0
e?o)eg ) =0

In accord with the (37) e[()o) = . So, one gets from (43), (44)
Consequently (42) takes the form
eled = 4
and the (41) becams
eéO)N + eled = 0.

According to the (37) 6%0) = —NWi. Therefore, the (47) takes the form

elel = N'
and owing to (46)
es = el N
The conditions (46) and (6), i. e.
ehelt = o8
are fulfilled simultaneously. Denote
e = det(ef).
We have
Guw = epnaper = —elel)) + efel.

According to the (45) eEO) = 0. So, it follows from the (52) that

a _ a
Bik = Gix = €; €.

(39)

(40)

(41)

(48)

(49)

(50)



Hence, according to (37),

i i i i N'N*
g™ = —€pyefo) + eheh = ener — Nz (54)
In agreement with the (MT100) and (54)
Bk = g'* 4 NT = etel. (55)

Eg-ns (53), (55) are in accord with the (46). The quantities goo, goi, 9°°, ¢ are expressed
in terms of N, N*, 8 by formulas (MT100)-(MT102).

Thus, all components of the 4-dimensional metric are expressed in terms of e¢ (or e')
and N, N while no restrictions on the components of the metric arise. Owing to (53),
(51)

B =det(By) = ¢*, e=/b. (56)
Let us introduce
Q= /Bel, = ec} (57)
and define Q? by the equality
QIQL = oF. (58)
Denote
Q = det(Q). (59)
Then, owing to (57)
Q=cel=e=p8 e=Q (60)
According to (57), (58), (60), (46)
Qr=eler = e (61)
Conversely, from (57), (61)
e =Q QL (62)
el = QL. (63)
In accord with the (53), (55), (62), (63), (60)
Bix = QQLQL, (64)
B = QTQLQE = BT QLQE. (65)

In agreement with the (MT355), (65) the Faddeev-Popov (FP) variables ¢** are expressed
simply through the Q?:

" = 65" = Q,Q5 (66)



For the further applications we choose as initial variables in the tetrad formalism the
quantities: Q°, N, N°. Indices a,b, ... are lifted up and sinking down with the help of
the tensors 1y = 0g 0 = 6%. Therefore it is nonessential where one writes the frame
indices a, b, ..., up or down. Further we do not pay attention to where these indices are
placed, and write

Qf = Qiay  Q, =Q™. (67)
However, this does not concern the indices i, k, ..., which are lowered and lifted with the
51;]{:7 BZk'
Evidently,
el B* = elelel = olef = eF = ek, (68)

But one must have in mind that owing to (68), (57), (61)

e’e el Bt = eek, (69)
ie.
Qi " = Qy, (70)
so that
Qs # B4Qy, (71)
and by (60)
Qs = *8%Q¢ = QBN QS (72)

The first-order Lagrangian in tetrad formalism can be obtained in the simplest way from
the 1st-order Lagrangian in the FP variables (MT372)

Loy = Tix00q"™ + (terms without dg(...)). (73)
By (73) and (66)

Ly = Ti0o(QLQF) + (terms without dy(...)) =
= 21, Q" 0, Q" + (terms without 9y(...)). (74)

We find from this the momenta P¢, conjugated with the Q%:

0L K
Pl = ———— =21 Q5. 75
' 3@ e (75)
Owing to that
1 a Qa
Tk — iQkiPi' (76)

Substituting the expressions (76) and ¢** = Q% Q¥ into the L1y from (MT372), we obtain
the 1st-order Lagrangian of tetrad formalism. However, it is necessary to take into account
that from the (75) three new constraints arise. Since m;; = 7mx;, we have by (76)

QpP; — Qi Pr = 0. (77)



These relations are equivalent to the equalities

QQ: (QrPF — Qi Pp) =0, (78)
or
QP — QP =0, (79)
ie.
O = " QPP; = 0. (80)

Let us show that the constraints ®* are the generators of the O(3)-rotations of tetrads
around the fixed directions eé‘o) (in a sense of Poisson brackets). Here and later we adopt

notations (if not whatever specified) 2° = 2° =0, z = (0, 2!, 2%, 23), 7 = (0, 2%, 22, %),

B(r— 1) = 6(z' — zH6(x? — 2H)(2® — 23) as well as Q%(z) = @, QL(Z) = Q' and

similarly for other functions. Let £%(z) = £%(z', 2%, 2%) is an infinitesimal function. Then,
at 20 = const

{[#sgwew.qum] = [aaevqnforgu) -
— /d?’xfagachkb(_éCdé]lcé?’(x o %)) — _5a€abdle — 6dbanb§a. (81)
Here we have taken into account that

{@. 94} = oo - 7). (82)

{ Z,Q’;} = {7t} =0 (83)
Analogously,
{/d?)xgaq)a,g);l} _ /d?;xé-agabc {ka,@i} Pe —
_ /d?’x gazabegbdghsd(p — ) Pe = 6adc§a(flc _ 6dba(f§7§a. (84)
The equalities (81) and (84) mean that the ®* are generators of the O(3) — transforma-
tions of tetrads. Therefore the ®* commute (in a sense of Poisson brackets) with all the

quantities, invariant w. r. t. such transformations and composed only from @Q° and P¢.
In particular, if the constraints H, and H; are expressed in terms of Q% and P¢, we have

{@“, f}N{O} —0, (85)

{@“,f}fi} —0. (86)

Since, the ®¢ as well as Q™ is a frame O(3)-vector, we get, analogously to (81)

{/d3x gaq)a, (I)b} — 6bca(1>c§a (87)



or
/d?’x g ({@a, g)b} — cbeages(y — 35)) —0. (88)
Because the £%(x) is an arbitrary function we have
{(I)“, cgb} = PG (z — 7). (89)
Thus, the commutators of the ®* with all other constrains are again constrains, and

therefor the ®* are first class constrains. At last, by (66), (76), (83), (82) we get after the
¢** and m;,,, being expressed through the Q!, P

{ogm) =t aiar ] -o (90)
{7T~ } _ 1 apa b g)b _ 1 a b g)b Ppa 1 a ) pa b g)b _
zkaflm U Qk ian N Qkan I i+4Qk ianNl =

@, {7 }?$+1Qz{ﬂ>s,g2’:n}g>?=
- icgfn(—caﬁ@z {anathoe + - {marf @inz -
= QU (QIQUTSI ( — 7))P% — {QU-0T85 (r — DIRG9 =
= QL QIS TP+ QI (- T)P! = — QL QLTI - QP (—T) =
= LQLQLQIRQ P - Q)5 (a ~ T) =
= LQLQLQIQE QDI r — T) = QI — ), (O)

(T, T} = QO QUQIQE= 2 (7). (92)
Further,
. 1 : 1 ;
{d* Tim} =5 {Qz ’;,Qm} = QL {0k 91} =
— %an{ i 2)b}Qk+ Qb Qz { k :fb} _Qb (SZ(Sb(S?’(IE $)Qk+ Qb Q16k6a63(1, 1,)

. 1 : _ A .
= 5@%@2’55553(:6 =) + 5QuQi0 8 (r = F) = 5(57'%5; +0,00)0° (w — ), (93)

{a* mim } = 6ih0"(a = 7). (94)

Thus, expressing ¢** and 7, through the Q% and P? by (66), (76), we find the relations
(90), (92), (94). If we substitute now the expressions for the ¢’* and m, in terms of Q!

10



and P! into the constraints Hy and H;, then, after commutation of these constraints, the
same expressions as in the FP-formalism arise, up to the terms, proportional to the ®%,
because of the change of the commutator (92). Taking into account the said above and
the formulas (MT328)-(MT330), we get the algebra of the constraints:

{9{2., ij} = 34,0:0% (x — T) + K048 (x — T) + (..) 2", (95)
{f}{i, f}N{O} = Fo0,03(x — T) + (...)00Y, (96)

{9{0, GN{O} = B*300% (@ = F) — BRI (@ = F) + () 0", (97)
{@a,:zci} — 0, (98)

{(I)“, :1(0} — 0, (99)

{cpa, cgb} — cabeegd(y — 7). (100)

Here all variables are to be expressed through the Q% and P.

It is essential that the transition from the Arnowitt-Deser-Misner (ADM) variables to
FP ones does not change the algebra of constraints, because it is a canonical transforma-
tion. If we go to the tetrad formalism, the number of pairs of canonical variables rises,
and new constraints appear. By (95)-(100) one sees that in the classical tetrad formalism
all constraints are of the 1st class. The 1st-order Lagrangian for the closed universe must
now be written in the form:

L) = PLogQl — NHy — N'9; — A*°, (101)
where \* = \%(z) = \(2°, 21, 2%, 2%) | po—cons: are new Lagrange multipliers, and the H,,
H; are the same quantities as in ADM or FP formalisms, but expressed through the Q?
and P? by (66), (76).

The explicit form of the operators H; and H; is obtained in the FP formalism (see
p. 7 of notes ”Quantization of gravitation I. Metric tensor approach”). By (MT365),
(MT339), (66), (76), (60), (62), (63) we find that

H; = —2¢ 1¢" (vi(qiﬂ'kl) - Vk(q}”m)> =
1 3 11 3 11
— 2004} Vit i) - Tuat 30t -

_ 0tk ("’vi@%@m) _ Svk@%cmf)) — (we?rpz) - v3k<629>?>) _

3 3 3 3
= —Qfelel <VZ~TPZ — kaPg) =QF (kapg — vyg) . (102)

11



by (MT368), (MT339), (60), (63), (62), (66), (76)

2 3

%
Ho = <_> (qlpqmq - qlmqpq)ﬂ'lmﬂpq - (2(]_) (R—2A) =

1
g ”

- (%) @aara - airaiep (30 (jeimt) - (X2) —20 -

VB »
— 1 (%) (abatonot - @iob?) - (

R—2A
ol )(R 20),  (103)

NS
&‘wp—t

3
where the R must be expressed in terms of the QF.
Let us represent the J; in slightly different form. By (102)

H; = Q™ (VP2 = ViP}) = Q™ (0P) — T)uP) + AYP; — 0;P) + Ty ) — AFPp) =
= Q" (0xP} — 0;P}) + (Q"FAY)P; — A Q™ Py, (104)
where we take
AP = Age™® (105)

with the A% = A;%, being constructed from the e?, ek, d%, d;. like the A,"p are con-
structed from the e}, ey, ¥, npa. As it is seen from (25), (26), (37), (45), (48),

ab _ AA
Ai - AMB‘u:i,A:a,B:b' (106)
By (80)
H; = Q" (0p P — 0;Ph) + (QF ALY PS — Ac©, (107)
Further, by (106), (25), (26)
QAY = ee™ (Sjye. — Siyey, — €Siecek), (108)

where it is taken into account (37), (102);

QAL = ee* Sh el — ee SE e — eel SP el = 2ee™ S} el =

= ee® (O)eh — Opel)e!® = ee (0)el)e!® — ee® (Opel)ele =
= (0e)e” + e el el = (9je)e’ + edye® = Oy(ee) = 5,Q";  (109)

by (109), (107)

Hi = Q" (0, P2 — 0;P%) + (0,Q") P — ALDP, (110)

H; + AP = Q" (9, P — 0,P%) + (0 Q") P (111)

The linear combination J; + A{®¢ of the constraints is also the constraint. It has
the simple geometrical sense. Let us show that the J(; + AP is the generator of such

12



a 3-dimensional transformations of coordinates on the surface 2° = const, that do not

change tetrad basic vectors as geometrical objects. We have at infinitesimal &' = £*(z)
{ / dPr (I + Agch),Qak} = { / P (0, (Q"P)) — Q") Q“k} =
. / PO QFSE 5 (2 — 7)) — QUOy 6k (z — 7)< =
— [ E2@(Q P - D) - @O o - 7)) =

— /d?’x(Q“laiek o ai(Qak:gi))(s?)(l, o %) — Qalglik o QZ(Qakiz)v (112)

{/d% (3 +AE(I>C),(PZ} = {/d% £ (0(Q"PY) — Q" 0;P)) aiPZ} =
= /d3x " (01(6"61,0% (z — 2)PY) — 6"6,,6%(x — )0, P}) =
= /d3x ("0, (Pe0° (x — 7)) — (0P 0% (x — 7)) =

~ ~ ~

= — / d*z (T?(akei) + (8Z~fPZ)6i)63(x —I) = —U’?aksi — (GifPZ)ei. (113)
Thus,

{/ d*x e (H; + ALDY), Q“k} = Q0" — Q™" — '0,QF, (114)

~

~ o~ o~ ~ ~ ~

{/d3a: e (FH; + ALDY), ?Z} = —Plope’ — £'0;P%. (115)

On the other side, by the transformation law of 3-tensors, as 2° — 2" = 2% + £*(z), while
unmoved vectors of tetrad basis, taking into account (MT232) one gets

Qlak({l?) — Qlak(xl . 6) — —5@@“’“ + Q’ak(l',) _
3 ak rak (.1 i ak i al 8(xk + 6k)
= —c'9,Q" + \/['(2") (" (2")) = —'0,Q™ + /B(x)(1 — 9") (6 (CU)T) =

— _giaiQak + meal(l,) - \/Beakaigi - \/Bealalgk —
= Q" (x) + Q0" — Q™" — £'0,Q™. (116)

Since, further, the P¢Q’ transform as v/, and Q. = \/Bel, the P¢ is a universal 3-tensor.
Therefore, at the considered change of coordinates,

"l
Pr(x) = —0P + PLa!) = 0,7 + () L)
= —P(x)0ke’ — £'0; P4 + PL(x).  (117)
So, at the transformation of coordinates

Q™ = Qlak(x) - Qak(x) = Q"0e" — Q" 0;e" — £'9,Q, (118)

13



0P = P (z) — Pix) = —PHx)Ope' — £°0; P2 (119)
Comparing (114), (115) with the (118), (119), we see that the quantities 3(; + A?®° are
indeed the generators of the such 3-dimensional transformations of coordinates on the
surface 2° = const, which do not change the position of the vierbein basic vectors in the
space. W. r. t. these transformations the H, is a stable density of a 3-invariant, and the
H; and A?®° are the stable densities of coordinate 3-vectors. So, repeating the derivation
of the equalities (MT268), (MT269), we find that

{f}{i + Abgb, J{k} = —3,0,0%(x — ) + H, 00 (x — ), (120)
{J—(i + AP, A;qf} = AD,5 (1 — T) + ASDC,8 (x — 7), (121)
{J{i + AP, :}co} — F0,0%(x — 7). (122)
It follows from (120), (122), due to (98), (99), that
{g{i, g{k} = —}Czakég’(x - i) + fHkaZé?’(ac — i) — {Azb, g‘fk} (I)b, (123)

This is a detailed elaboration of the formulas (95), (96). It follows also from (86), (89)
that

{J—Ci 4 AP 9, + A;q>c} = (T 4+ A;0%)9,0% (x — T) + (Hp + ACD)9,0%(x — 7). (125)

~

By (81) it can be written, further,
{/d?)xA?(I)bgi’Qld} _ /d3xA?8i {q)b,Qld} _ gdbandégii _ Eiénglb, (126)
analogously,
{/d% eiAfcb”,:fg} - /d% ¢l {Ag,ﬂ:g} P AV (127)
By analogy with the {J; + A?®°, 9;(0} we have
{J{i + ALY, cg“} = 0°9,8%(z — 7). (128)

From the equalities (114), (115) and (126), ( 127) we find that

{/ d3x gi:]_(:z_, Qak} — Qalalgk o Qakaigi o gi(aiQak + A?kab), (129)

{/d%sif}(i,?z} = —PpOpe! — (0, Ph + AP /d% (ei {Ag,?;} @b) . (130)
The formulae (129) differs from (114) by the change of the usual derivative 9;Q% onto
covariant one only in tetrad index. This means that the quantities JH; are the generators
of the such variations of the functions @™, which are generated by the change of the
coordinates, carrying with itself the vierbein system via parallel transfer. The same
follows from (130) w. r. t. the P¢, if one adopts the constraint * = 0.

14



3 Tetrad variables having the property of connection,
”loop variables”

With the help of canonical transformation one can go from the variables Q°, P¢, introduced
above, to the variables, having the form of a connection. This allows then to apply the
methods, used in the gauge field theory, what leads to the so called ”loop quantum gravity
theory”. Let us consider the main ideas related to this formalism. We use the vierbein
frame, which is related to the coordinate frame as described in sec. 2. Let us start from
dynamical variables Q°, P¢, introduced in (57) and (75). First of all, let us construct the
appropriate classical canonical formalism.

Earlier (see eq-ns (25), (26)), the following formula for the coefficients of vierbein
connection was obtained:

Apas =napAl s = —Aupa =napSheh — nppSh e — elnppesShel,  (131)
where

Sl == (Oaef — 0pel) . (132)

DN =

In the used vierbein frame, where e’(‘o) =n* € =0, ez(-o) = 0, the 3-dimensional part
of the connection (131) has the form

_ D « D _ «a E agD B __ d k d k c kqd
Ai,ab - naDSaieb _anSaiea — €, NNEDELO36, = 5adskieb _5bdski€a - ei(SCdeaSkleba (133)

1. e.

_ qa  k b k c kgec Jl

Here
a 1 a a

It is taken into account that 3-dimensional indices a,b, ... are lifted up or pulled down
with the help of the symbols 6%, 6, , and therefore there is no difference between up and
down indices a, b, .... It is seen that with our choice of vierbein frame the 3-dimensional
part A; 4 of the connection is constructed from vierbein parameters e’,e? and symbols
Sab, €xactly in the same way as the connection A, ap is composed from e}, eZ and the
symbols 14z, 1. e.

3

Ai,ab = Ai,aba (136)

3
where the A;,, is vierbein connection on the 3-dimensional hypersurface 2 = const,

corresponding to the local invariance group SO(3). Accordingly,
Ai,ab = iab = Aiab = _Ai,ba- (137)
Obviously, one can also write

A = e AL, (138)
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where

)

1 1
Af = St A = et (286l — efenSe) (139)

Here we have taken into account that eS¢, = —£ S ek and used the (133).
Let us express the quantities AS in terms of the variables Q%, Q%. By the definitions,
introduced above

b =Q7IQl, el =QFQY, (140)
where
Q=det (Q)),  QLQY =5 (141)
Evidently,
1 ]_ 1 ]_ 1
0;,Q2 = iQfﬁQQZ@QS = §Q5QZ5iQI;a (142)
0,Q% = —Q (9,Q}) Q5. (143)

The equality (143) is obtained by the differentiation of the relation Q{QF = §2, and the
(142) is true because

det(Q% +dQ%,) = (the algebraic complement of the matrix Qé)j dQ: = QQdQ". (144)

By (139), (135), (140), (142) we obtain

1
2AZC = gcab ((ake? — ai€Z) elbc - 625 (akeld - alez) 626?) =

1
= Zé‘mb (462’5 0pQf + 2QF QQLOQT — 4Q30:Qf — 203Q1,0,Q7 —

—QiQaQLQT — 2Q4(8:Q1) QY + QFQ,QLAQT + 2Q'§(@Qi)@i@?> - (145)

Due to £ = —¢ the term, containing the d¢, does not contribute here, and some other
terms coincide. Therefore,

A7 = o (QUQEQIOQL + QLQEQIAQ! + Q! + Q) (146)

Studying the properties of the continuation of the gravitational field into the complex
region (that we will concern later), A. Ashtekar has found that the following change of
variables is a canonical one:

’

Q. = Qi (147)

Po = P+ hAL, (148)

where the b is an arbitrary constant parameter, i. e. that
{Q;ZvQ;)k} = { Z?Q];} =0, (149)
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{@ior} ={@uot} = 30 - 2), (150)

{fp;a,rf}f} = {fpg,ffg} ~0. (151)

Since the A? depends only on the @' ,and not on the P?¢, the equalities (149) and (150)
are fulfilled trivially, but the correctness of the relation (151) is a very nontrivial fact.
Indeed,

{pe,or} = {orvoar vt roar} = {ve o} o fac ot} vo o at}. (52)

We have taken into account that {A;‘, Az} = 0 because the A¢ depends only on the Q.

Thus, in order that the transformation (147), (148) were canonical, the following
equality must be fulfilled:

U Ak} A0 = {7 A - Bk ATy =0 (153

By the definition of Poisson brackets one has

w o (@) SALE) AL 6P )
(mat)= [ o (Gt~ mimes) 5

t'=const

where r = (z', 22, 2%), and the p means the 3-dimensional functional derivative. Owing

)
to

03 (x) _ 0P3 () _ casi :
QL) 0, () 606;0(x — '), (155)
we get
§AL(T)
R e T 1
{iPZJNk} (SQEI(.%') ( 56)
Thus, the relation (153) takes the form
b(x a
JAL ()  0AY(x) 0. (157)

5Qi(r)  0QL(T)

As in the case of usual functions fi(x), when the equality 0;fr — O fi = 0 is equivalent
to the existence of such a p(z) that f; = 0;p, the relation (157) is fulfilled then and only
then when there exists a functional F[Q!] of functions Q' (z) for which

OF
Al(x) = ———. 158
= 50w 1
Such a functional does exist and is equal to
1 .
Fege [ dnQaa; (159)

t=const

17



The possibility to represent the complicated expression like (146) in the form (158), (159)
is highly nontrivial. A. Ashtekar discovered this, going by circuitous way (this will be
considered briefly later). Now we simply check the equality (158) at the condition (159)
directly. Let us make this.

Under the variation 6Q° of the field @’ the variation of the functional F[Q!(z)] is
determined, in accordance with (159), by the equality

20F = e / P’z (0QLQLAQE + QLOQr:QL + QLQLDQY) =
= [ ("5Qi0100% + Q- QRO + " QQaQY) =
- / @z (= QuarQ) — e TIQUQI QAL + = (BQEQ! + QhDLQY)) QL. (160)

Here we use (143) and perform the change

e"Q QI 0Q;, — —" ((Q4QY)) 0QL = £ ((3u Q) QL + Q0kQ7) 6Q;,  (161)

dropping the nonessential here surface term in the integral. Therefore

OF
507 = = (@0Q5 + QiaQ) + Q10nQ7) — £ Q1 Ay, (162)

Let us show that this coincides with the (146). Take into account that e®g® = §°t
geb — _ge and, hence,

2

1 1
d c cab _d abh Nh cab _d bah h
—& ngk = ——28 g fg6 Qk = —28 g fg6 Qk =

_ %gcab (6db6fa(sgh + 5da6fh(sgb + 6dh5fb(sga . 5da6fb(sgh . 6db6fh(59a . 5dh5fa(sgb) QZ _

_ gcab (6db5fa(sgh + 5da6fh5gb + 6dh6fb5ga) QZ (163)

We used the known formula expressing the e¥9¢%" in terms of the products of the §%-
symbols. By (162), (163) we have

OF
= (Qp0iQy + Q0 Qpy + Q0L Qi +

p e
0Q%,

+ (8751a59n 4 glaglha 4 560 §97) QLQIQRAQE) =
= e (QR0Q; + Q7 0uQyy + QuOKQT+
+QLQTQRAQ) + QuQI QRO + QLQIQRQs).  (164)

Evidently,
QIR0 = Qi001Q, = Qi0kQ, = (QI0kQ + Qi) = 0. (165)

Therefore some terms in the (164) are cancelled. Further,

P QUQIQROQL = —= QLA = e QRIQLAIQL. (166)
Hence,
oF 1
507~ 50 (QROQL + QLa:Q7 + QLQIQLIQL + QI QAL) (167)
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That coincides with the (146). Thus the equality (158) is proven under the condition
(159), and, therefore, the relations (147), (148) define the canonical transformation.

Having performed the canonical transformation (147), (148) we can then perform other
two transformations, canonical character of which is evident. Let us put

Qy = Qs = bQy, (168)
na 1 la __ Aa 1 a
Pit = gipi = Aj + g?i, (169)
and then
1
BY =PI = AL+ 501, (170)
I = —Q" = b}, (171)

We will consider the B® as new canonical coordinates, while the IT! as canonical momenta.
The transition from the Q, P? to the B¢, II! is a canonical transformation. This trans-
formation was proposed by A. Ashtekar. The constant b is called the Barbero-Immirzi
parameter. It can take any value.

Let us clear up how the quantity P} transforms under the change of coordinates, and

also under the change of vierbeins, which does not violate the condition eé‘o) = nt. By

(76)
P = 2mQy, (172)
and by the (MT357)

1
(2)2v/B

Tk = —

Jikym P"™. (173)

and in accordance with (MT163)
P = 2" K, (174)
Due to
Jitimd™"* = O}, = % (07 03 + 007 (175)

we get

_ - 1 ) - Im,rs _ 1
Tk = ( (2%)2\/Bgzk,lm> ( 23 )Krs — 2%\/B

and in accord with (172)

K (176)

P =2 L Qs K; (177)
TNV T e
or
a 2 k
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Since the e’;, K, are stable 3-dimensional tensors w. r. t. coordinate transformations and
tensors (in particular, vector and invariant) w. r. t. the 3-dimensional vierbein SO(3)
— transformations, the P?¢ is a stable coordinate vector and a vierbein SO(3)- vector.
Therefore, the quantity

Pob = P, = gobepe (179)

is a vierbein SO(3) — tensor and changes under the SO(3) — transformations of vierbeins
according to the rule

~

P =P !, (180)

where the P; is the matrix with elements P;%, and the @ is the matrix of SO(3) -
transformation, such that

oot =1 (181)
At the same time the quantity
= A = eMAS (182)

is a 3-dimensional SO(3)- connection (as was clarified above). So, it transforms under
the SO(3) — transformations of vierbeins as follows:

A =DAG T+ oom (183)

This formulae is completely analogous to the corresponding relation of the gauge field
theory (with the replacing of SU(3)-matrices by SO(3)-matrices, and 4-dimensional space-
time by 3-dimensional space). The formulae (183) can be got from the requirement that
the covariant derivative of the vierbein vector

3
Via“ = 8ia“ + Aiab ab (184)

has to be a vierbein vector, i. e. that the following relation has to be valid:
3

Vi(w“bab) = w“b%iab. (185)

Beside of this, the coefficients of the connection A;*, are stable vectors w. r. t. 3-
dimensional coordinate transforrr}\ations.
Let us form now the matrix B; with the elements

B}y = B" = "B, (186)

By (170) one has

~ ~

S| =

and, by the (187), (180), (183), under the SO

—~

3) — transformation of vierbeins, one gets
Bl =0B& " + 00w (188)

In other words, the quantities B;%, transform under the SO(3) — change of vierbeins in the
same way as the A;%, i. e. the B;%, are the coefficients of new SO(3) — connection. This
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transition to the generalized coordinates, having the character of the connection, was the
goal of the whole construction. Let us remark that under the 3-dimensional coordinate
transformations the quantity B;®, behaves as a stable vector because the A;*, and the

P;*. have this property.

With the help of the connection EZ one can construct contour integrals in the way,
analogous to the construction of the so called Wilson-Polyakov integrals in gauge theory.
Let us define, at first, the notion of contour integral with the connection A;. Let us
parameterize some curve I' (contour) on the hypersurface ¢ = const with the help of the
equality 2° = f%(£) where the ¢ is the parameter varying along the contour. We assume

that the derivatives dz'/9¢ do not be equal to zero simultaneously nowhere.

Let a®(&) to be a vierbein vector on the contour I" at the point £&. We define a parallel
transportation of a vector a®(£) to infinitesimally close point £ 4+ d¢ of the contour T' so
that the quantity a®(£ 4+ d€) resulting under the transportation be a vector at the point

& + d€. This condition is fulfilled if one takes

(€ +dE) = a*(€) = AR(©)0O T
Indeed, let us write the equality (189) in the form
N Ao
ole+d) = af6) - A (a(9)ae) L e

and take into account that under the change of vierbeins we get

a'(§) = ©(x(§))a(8),

R (a(6) = 2(() A ()57 (2(9) + 2(a(e) 22

vi=ai(g)
0w ()

= 0@ () Ai(x ()@ (2(€) — —5 7 & (@(8))-

)

dg
— [ W(x(&))Ai(x(&))w  (x(£)) — . w (x(€ w(x(&))a(&
( (@(8))Ai(2 ()@ (2(§)) — — 3 e (( ))) ((€))a( )d{f
N OW(x) d’ ~ dz
=w(x(&))a(& . —dfa(§) — w(x(&))A;(x(&))a(& d¢ =
O+ 57|, GO~ RO gk
= (ol + d))al6) — @€ Aia(€))ale) e

At the necessary 1st order in the d¢ we have
da’
dg

Thus we get the vector form of the transformation:

o/ (€ + dE) = B((€ + dE))a(€ + dE).

0 (€ + dE) = B(alE + de)) (a@) ~ A(e)ale)
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(190)

(191)

(192)

(193)

(194)

(195)



Let us divide the contour T' in infinitesimally small intervals and, repeating the parallel
transportation along the one interval infinitely many times, define the vector a(€) at all
points of the contour, starting from a given value of this vector at one point. The obtained
vector function a(£) = a®(€), in accordance with the (190), satisfies at every point of the
contour the following condition:

dz’

a(§ +d€) = al€) + Ai(@())ale) g s =, (196)
or
da(§)  ~ ., dz B
() + Aot T ) ds =0, (197)
Due to the arbitrariness of the d¢ we get the differential equation
da(§) - da'
e+ Ao G =0, (198)
or
da® -~ da
4 A5 =0 (199

This equation is called the equation of parallel transportation of the vector along the
curve.

If two points z(;) and (3 are connected by two different curves, then the parallel
transportation from the point z(;) to the point x(y) can give different results. In particular,
the vector can change after the parallel transportation along the closed contour to the
initial point.

The equation (198) is linear and therefore its solution can be written in the following
form:

a(€) = W(g,&,T)a(&), (200)

where the a(&;) is the given value of the vector a at the initial point (&) of the contour
[, and the W (&, &, T) is a matrix depending on the contour T, its initial point & and the
point &, to which the vector a is transported. Substituting the (200) into the (198), we

see that the matrix /W(g, &, ) satisfies the equation

dW (€,6,T)
dé

dz'(§)

= —Afa(O)W (e, 6. D)=

(201)

at the initial condition
W&, =1, (202)

where the 7 is the unit matrix.
The equation (201) has the same form as the Schroedinger equation in quantum me-
chanics. But we have instead of the time the parameter £, and the quantity —Ai(a:(f))w

d§
instead of the —H.

22



Therefore the solution of the equation (201) can be, as in the case of Schroedinger
equation, written formally as an ordered exponent of the integral over the points of the
contour:

3 o
W60 = Psenp - [ dédxdg)ﬁm(é)) . (203)

&

Here the symbol P& ¢ means the ordering of quantities, depending on points of the
contour ', from the & on the right to the £ on the left (analogously to the ordering in
time in the case of Schroedinger equation). The integral (203) is the analog of the Wilson-
Polyakov contour integral in the gauge field theory.

Under the SO(3) — transformations of the vierbein frame,

e = whyel (204)
the equality
a(§) = W (€. &, T)a(&). (205)
turns into the
d(€) = W'(€,&,T)d (&), (206)
where
d(€) =B@©)al6),  d(&) =d(@(&)al&), (207)
so that
B(x(€))a(€) = W'(€, &, D)5 (x(&))al&), (208)
a(§) = 0 (2(E)W'(&, &, T)B(x(&))a(€y)- (209)

Comparing this with the (205), we find the transformation law of the matrix /W(g, &, 1)
under the change of the vierbein frame:

W(E &, 1) =07 ()W (&, &, D)B(x(6)), (210)
or
W'(&,&,T) = B(x(€)W(E &, D)~ (#(6)). (211)
Let now the contour I to be closed (be a loop), so that
2(&2) = x(&), (212)

where the (&) is the final point of the contour. Then

W'(E2,61,T) = B(2(6))W (&, &, D) (2(&1)) = B(2(&1))W (&, &1, D)w H(2(&))  (213)
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and
tI'W,(fg, 617 F) = trW(fZa 617 F)a (214)

where the trTV is the trace of the matrix V.

Thus, the trace of the contour integral over the points of closed contour is invariant
under the SO(3) — transformations of vierbeins. By the vector character of the quantity
A;% w. r. t. 3-dimensional coordinate transformation the trace of such a contour integral
is also invariant under these coordinate transformations, if the contour I' as a geometrical
object is not displaced. But if the coordinate frame carries the contour with itself under
the transformation, so that the equation of the contour in new coordinates remains of the
same form as in initial coordinates, then the trace of the corresponding integral changes.

New connection B;%, transforms under the change of vierbein and coordinate frames
in the same way as the A4;%. So the contour integral constructed from the connection
B;",

3
W(E,&,T,[B]) = P< & exp | — / de
&1

da'(€)
dg

B;(x(€)) (215)

has the same properties as the contour integral (203) with the connection A;%,. In par-
ticular, the trace of the integral (218) taken over the closed contour T',

trW (&, 6,T,[B]) at 2'(€) = 2 (&) (216)

is invariant under the transformation of the 3-dimensional vierbein frame and also 3-
dimensional coordinate frame, if the contour is not displaced as a geometrical object at
the change of coordinates. Here as in the case of the gauge field, the components of the
connection B;%, are generalized canonical coordinates (after the canonical transformation
(170), (171), while the connection A;%, was a complicated function (146) of the canonical
coordinates Q' before the canonical transformation.

Thus, one can easily construct from the canonical variables B;*, any number of quan-
tities with the above mentioned invariance properties. This is a basic point of the ”loop
quantum gravity”.

In terms of the variables B¢, TI% the canonical form of the action is as follows:

S = / d'z () BY — NHy — N'H; — A*®°) (217)
where the Hy, H; and & are obtained from the same quantities, defined by the equalities
(103), (102), (80), with the help of the substitution

, 1.
Q) =T, 219
P =0bB} — bA? Qim—tiis (219)
that follows from the (170), (171). Here, by (146) we have
Al gimoim = et (TSI IO, T, + TILTIFTIE O, 1LY + TTF 0, I1¢ + T1EOI1F) | (220)
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where the TI¢ is defined by the equality
e = 6F (221)

(T1¢ is not obtained from the TI¥ by the lowering of the index with the f3;).
Let us express explicitly the constraints ®2, Hy, H; in terms of the B¢ and II{. By
(80), (219), (218)

B = e™CQPPE = —TL BY 4 eI AL, (222)

By (220) we have

O] A = %gabcnggcfg (H{ TETIEA, T, + TLTTETIE0, T + 1150, 11 + 1] az-n’_;)
= % (607 6% — 5995°1 ) 11 (/T OIT, + T TS TIZOLILY + 150,11 + T o,11} ) =
= ST} (TS0, + TLTSTIZOGTTY + TTEOLTTY -+ TIEOLTTS
—IVTIETL O, I, — T TIETIE 0, 1) — 1150, 110 — 1) 0,1TF) =
= = (IETL 0, 1T, + ITL T 0, I1) + ILIT 0, I1¢ + TIRIT 0,115 —
—3IE IO, 1T, — T IO, 117 — TIETL; 0,110 — 9, 11F).  (223)

DN |

Due to
1170, 1T, = —I1,0, 117, eIL 0,115 = — (8,118 I I}, (224)

some terms are canceled. Beside of that,

I 1T = — (B, IT,)ITTT; = —)IT;,. (225)
Therefore,
c®eITE A = —gIT' . (226)
By (222), (226)
O* = —OI1E — eI BY = — (9411 — T By (227)
where
Bib, = B¢, (228)

Let us represent this in a slightly different form. Let [T = det IT%. By (218), (60)
B=Q=detQ’ = —b"I. (229)
and

Z'_QZ_ 1 HZ lHZ

_——— = —D2

RV B Va1 SV

(&

(230)
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Hence the TT¢ /\/—TI is, as the €%, a stable 3-dimensional tensor. One can define the 3-
d1rnens1onal covarlant derivative of that tensor with the vierbein connection B;%,, denoting

it by Vk ( ) Then we write

T

() (o () - ) -

= oI + v—1I \/_H> Il + rgknl I BY,. (231)

However, by the (229)
- 1 i — L i 1 ) i 1kTT
VT (az—m> M = /-3 (az ) I, = ——— (az\/B) = TEIT. (232)
Therefore
VY, ( I,
v

and the constraint ®¢, (227), can be written in a covariant form

) = 9,11, — 11, B, (233)

3B 11
—v —11V; (—“) . 234
To transform the Hy and H; let us introduce the quantity
3
Ff,i’(A) = 0, A% — Oy A;ab + A;‘dAgb — AZdA;ﬂ’, (235)

constructed from the 3-dimensional vierbein connection A% similarly to the field strength
tensor construction from vector potentials in nonabehan gauge field theory. The quantity

F ;‘,g (A) is simply related with the curvature tensor R m,ik Of the 3-dimensional hypersurface
1% = const. Indeed, the 3-dimensional analog of the equality (22) has the form

A% = A = el r mer + efd;ep. (236)
Substituting the (236) into the (235), we find that

3 3
F(A) =0 (ef‘l“fme;” + e?@kd,) +

3 3
+ (elo‘l“ﬁmegb + e?@ieg> (eifzqez + e%@w,’j) —(i+— k), (237)

where the (i «+— k) denotes a quantity obtained from a given one by the exchange i — k,
k — 1. Further,

3 3 3 3 3 3
FR(A) =¢f (&sz + FMZ;) el + (0ief ) Timer + ef T 0ien’ + (i€ ) Opey+

+ef0;0e + el T Oper — (8Z~e§‘)ljfeqez — (0ie) (Opel) — (i ¢+ k). (238)

Some terms here are canceled each with other or with the (i «— k) because in the sum
they are symmetric w. r. t. the exchange i — k, k — 7. Therefore

Fo(A) = et <a IL 4+ T I — (i k)) . (239)
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At the same time,

3

3 3 3 3
Rlyie = 0T}, — O Th, + T4 T8 — Il T (240)

kq™ im>

so that
3 3
FiR(A) = el R ey, (241)

3
i. e. the strength F%(A) is the 3-dimensional curvature tensor, related in two indices to
3 3
the vierbein, with F9(A) = —F%(A).
3
Let us define the quantity F'% (A) by

Fb(A4) = 9P (), (242)

From the equalities (235), (241) and A;% = % A¢ we get

%fk(A) = 0; AL — O AS — P AT AY = 3 C“be W€ le ik (243)

3 3
where le,ik = Blanm,ik with
3 3 3 3
Rim.ir = Rigm = —Buiim = —Rik - (244)
3 3 3 3
Together with the F%(A), F¢ (A) let us introduce the quantities F%(B), F%.(B), con-

3 3
structed from the connection B;% in the same way as the F9(A), F% (A) are constructed
from the A;%,:

3 3
)=k (215)
> c > c
Fi(B) = Fi.(A) oo’ (246)
Let us return to the constraints H;. By (102)
3 3
5, - 0 (Vivr - ot (247)
On the other side, by (243), (246), (170)
3
FilB) =055 = 0 = BB =
1
=0; | Ay, + ?c — O | AL+~ ?f — b [ A% 4 fPf Al 4 —Ph ) =
b b b b
3
= Fi,(A)+
1 3 3 1
+s ((82-?0 — b A0Ph Féﬁf) — <8ka§ — b AGPY FMP?)) — ﬁec“b?“? (248)
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where we have added the equal to zero quantity

1 2 C > C
5 (~ELot - B )
Or,
> c > c 1 > a > a 1 cabpapb
Fi(B) = Fi.(A) + A ViPe = VP | — e PP =
1 ca > 1 2 a 2 a 1
= 58 bel eb ik,lm + g (vak — Vk?z) b
where we have taken into account the (243).
Hence,
1 . 3 1 . /3 3 1 .
HZCFZC,C(B) = Echscabefle,’,”Rik,lm + BHZC (Vif})i — V,ﬂ’f) — b—zﬂiec“b?g?z.
By (171) II{, = —bQ’, so that with the equality (247) we obtain
1 . 3 3 . 3 3
o (vifpz - Wf) - q <Vi9’% - kaP;*) T
3
Further, the tensor Rjj , satisfies the identity
. 3
glklRik,lm =0,
which is a 3-dimensional analog of the 4-dimensional identity
6Ma’87Ra5775 = 0.
Therefore, taking into account the equality
MY = —bQ" = —bee,
where e = det e? = (det e’)™!, we find that
i b1 im 7
Hl c“be eb zk,lm = —beelceae,’,”&:c“ Rik,lm = —bé‘l mRik,lm = 0,

3 3
because of Rig im = Rim,ik-
Finally, by (222) and (255) we have

1, 1 1
— e PP, = L QuPe P, = S0P,

In virtue of the (252), (256), (257) the equality (251) takes the form

3 1
1F,(B) = ~%, + ;P

and, hence,

.3 1
Hy, = —TLFS(B) + E:PW.
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Early we have introduced (see (111)) the linear combination of constraints H; + AS®c
which generates transformations of 3-dimensional coordinates without a displacement of
vierbeins as geometrical objects (in the theory with canonical variables Q¢ , P%). By (218),
(219) we can write this quantity in the form

.3 .3
Hy, + ASDC = —TI'FS,(B) + (B) — AD)® + AS®° = —IT'F¢, (B) + B.®°. (260)
We can use, if it is convenient, instead of the constraint JH; the constraint
.3
), = Hy, + ALd° = —TILFS,(B) + BpaP. (261)

Since the transformation (Q%,P%) — (B%1I}) is canonical the physical sense of the
constraints ®* (234) and H), = H; + Af®° (261) does not change. The constraints ®* gen-
erate, as earlier, the SO(3) — transformations of 3-dimensional vierbeins without a change
of coordinates, and the constraints 3, = J(; + A7®°¢, ®* generates the transformations of
3-dimensional coordinates without the change of vierbeins as geometrical objects.

Let us return to the constraint Ho. By (250), (171) and the equality Qi = Sze! we
have

) 3 1 3 1 /3 3 1
I T F5(B) = b25€fiek5dfc <§5cabezegnRikJm + 3 (Vz‘?Z - Vlﬂf) - ﬁe“‘b??ﬂ’@ =
= 0 Beelele] le Im + QbBV (eesPre¥) — B (ehel — ehel) PIPl (262)

We have taken into account that

3 3
gliegabe — gdagib _ gdbsic — wiek =0,  ve¥© =0, (263)
Further,
. 3 3
b>Belelelie] Rzk im = b* BB B Rify ym, = U° BRR, (264)

2()6% (edef Py dfc) = 2b+/39; (fedef Py dfc)
= 2b\/B0; (ke QhPL) = 20\/B0; (e} @%),  (265)

— B (ehek — etek) PIPI = QLQEPIP] — (Q\P)? =
= QL (@47 — QiP!) + QuRkP!P] — (QiPY)? =
= QLQYPIP] — (QiPH)? — QhPleUedc.  (266)
Therefore
ML= P, (B) = b BR+ (QUQSPIP] — (QuPH)?) — Pl +2b\/Bo; (ch”) . (267)

At the same time, by (103)

Ho= g (é”) (@@L — (@hoh)?) - (%) (f-21). (268)
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Therefore the equality (267) can be written in two ways: the first one,
. 3
I T5e" F5.(B) =

— YBR+4 (Q%> (:}co + (gx) (13% - 2A>> — QkPLeYed 1201/ B0, (DY) =
— 4 (Q—) (f}co+ (Q—> (<1+ (2—%>2b2> 13%—2A>> +
3¢ 2 2
—QkPLAed 1 2b1/30; (e407);  (269)
the second one, taking into account (218), (219):
MM G (B) =
(oA 1+ (%) ) (et - oty +
202 BN — QEPLTede + 201/, (e1,®7) =
— (200 \/BH, + (1 + (%)21)?) (H’ZHé(Bi — AD(Bf — Af) - (T (By — AZ))Z) +
F22BA — QEPLYede + 201/ (@), (270)

where the AS, Q% 3, el are to be expressed in terms of the T} with the help of the (59),
(60), (62), (218), (220). Accordingly, the constraint Hy can be written in two forms:

Ho = i (2%> (HZH abc%fk(B) + QhPleVed” — 2b\/B0; (63@‘1)> B

Q3
g; ((1 + (22%> b2> R- 2A) (271)

. 3
Ho —IT:TF e, (B)+

" (1 (%) b?) (|35 — A0 (B — A7) — (5B — A41)°) +
+20%BA — QEPIYede + 201/ B0, (eg@d)> . (272)
The action in the canonical form looks now like the following:

sy / d'z (T80 Bf — NHy — N'H; — \d?) . (273)
Substitute here at first the Hy in the form (271) and replace

/ d%N%(Q%)bai(efl@d) (274)
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by the

/ d'z <—27%befi(8iN)<I>d> (275)

assuming, for the simplicity, that the universe is closed and throwing out the surface term
in the integral®. Let us take, further, by (261)

N*3,, = N*3H, — N*AS e, (276)

As a result we find that

St = / d'x (HgaoB?—

~(ENZE) (it fe By — @ (2 (e (22) 2) hoan)) -
4 Q§ ik 23 2
—Nkg(, — (A“+ 4NQ1Qd?fsdfu%begaizv—zvmg) <1>a>. (277)

Now we introduce new lagrange multipliers

1 2
N' = 4N\/_ (278)
’ 1 (2%) kepf _d (2%) i k
a_ ey - NE2Z fa 4 =" hei 9. N — N* A%, 2
A A +1 \/QQdiPks + 3 be;,0; 3 (279)

Since N, A% are arbitrary functions, N, A\* are arbitrary too, and they may be used as
lagrange multipliers.
Now we get

eyt = / d's (0BY — N'36 — N¥3G, — N, (280)

where Hj, ¢* are determined by (261), (234) and

K, = TITTE9 FE, (B) + 52T ( (22%)>2 ((1 n <(22—”)>2 b2> R- 2A> . (281)

We take into account that

B=Q=—b"=—b3det(I). (282)

in accordance with (229). It is presumed, that ]3% is expressed in terms of IT¢ by (218),
(65). Lagrange multipliers N’ and \'® may be also expressed in terms of N, N, \* B¢,
IT by (218), (219), (146).

Let us represent Srep(B " in the other form with the help of expression (272) for H,.

From this expression and (217), (276) we find

rep(B,II) 4 i a N i 11k _abe e
Sw /d <Ha80Bi - (—W> (Hanb5 Fiy(B)—

2Even if the space-time is asymptotically flat at free dimensional infinity the surface term can be here
neglected because the corresponding expression decrease at z*x* — oo enough rapidly.

31



- (1 + (27”) b2> (B — Ap)” = T (B; — A7)(B; - A7) - 2b26A> -

! a N a
-4t (X ekl -

If we introduce instead of N, A\* new lagrange multipliers

2

29 b(aiN)eg — N’“A%) qﬂ). (283)

N
N'=——— 284
AV .
N = o N kplodia LN — NF AL 285
- (2%)b2\/BQd k< (2%)bea t k> ( )

the action (283) will be:
Syt = / d's (M0, BY — "3 — N*3¢, — X"@*) | (286)

where
. 3
Ho = I, I5e" F5, (B)—

- (1 . ((Z—”))b) (15055 — A)* — LB — Ap)(Bf — A7) - 11A. (287

It is supposed here that A? is expressed in terms of IT¥ in accordance with (220) and that
IT = det IT,

3
F¢.(B) = 0;B; — 0, B¢ — “*B!B?, (288)

and in accordance with (227), (234), (261)
.3
H;, = —IILF5(B) + B.9", (289)

T,
VAT

¢ = —/—TIV[B] < ) =— (011 — 115 BY,) (290)
where BY, = st B¢,

One may express lagrange multipliers N”, \"® in terms of N, N*¥, A\, B¢, IT' with the
help of (218), (219), (220) and equalities 8 = Q = —b—31I, €’ = Q~/2Q! .

It is possible to use the theory, based on any of the two forms for action — (280) or
(286).

The variables B?, IT: turn, after the quantization, into the operators with commutation
relations for fixed 2° value:

(B (), 1 (@)] = 67058 (x—2),  [Bi(x), By(@)] =0,  [IL(x),I;(@)] = 0. (291)

Lagrange multipliers are arbitrary functions and one need seven more subsidiary condi-
tions to fix this arbitrariness. Constraints Hy, H;, ®* are too involved to solve them
explicitly. So one has to apply constraints to the physical state vectors:

HI W >=0 (292)
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or

HL|W >= 0, (293)
H|W >= 0, (294)
W >=0. (295)

It is easy to get state vectors in B{-representation which satisfy the constraints (295). In
fact, the constraints ®* (295) generate tetrad transformations, and the trace of the closed
contour integration of connection B} is invariant under such transformations . Therefore,
any function of any number of such traces of different closed paths on the 2° = 0 surface
is invariant under SO(3) tetrad transformations and satisfies the constraints (295).

It is slightly more complicated to satisfy constraints H} (294). These constraints
generate three-dimensional coordinate transformations, which do not affect tetrad system
as geometrical object. Operators B%(x) change not into B/*(z'), but into B/%(x). In other
words, changing coordinate system carries the integration contour with itself, so that it
is not stable geometrical object. Trace of this path integral is not invariant under such
transformations. But it is possible, in principe, to construct state vector, which is invariant
under such transformation. One need firstly to produce function ¥ of some number of path
integral traces and, then, carry out continual integration by all possible transformations of
three dimensional coordinate system. It appears a state vector, invariant under constraints
H:, .

If it may be possible to satisfy the constraint (292) (or (293) in other variant), the
quantum gravity problem would be solved completely, since generalized hamiltonian is
not more than linear combination of the constraints. However, the constraint H{ (or Hj)
is much more complicated and one may rely on approximate calculations only. In approx-
imate approach to the problem on the hypersurface 2° = 0 it is usual to introduce lattice
and generate closed loops from its edges. It is known, how to get full set of independent
state vectors on this lattice, which satisfy constraints (295). Different approximate meth-
ods to solve equations (292) (or (293)) are now being developed. This field is known as
"loop theory of quantum gravity”.

It is ascertain by now, that quantum theory results depend on Barbero-Immirzi param-
eter b, though in classic the different b theories are connected by canonical transformations
and so are equivalent. It is known also that in quantum case the constraint e’(‘o) = n* re-
sults in violation of the local Lorentz invariance of tetrad frame at very small (near Planck
length) distances. It does not take place in classic case, where results do not depend on
supplementary conditions such as e’(‘o) = n*. Here we deal with quantum anomaly. It does
not lessen the value of the theory in itself, since quantum anomaly at very short distances
may not contradict the observations. Nevertheless, the other possibility was investigated
in PhD thesis by S. Alexandrov [5]. He determined that it is possible to construct theory
without violation of the local Lorentz symmetry, but it would be very involved. Therefore,
there were no any attempts to develop or to apply this theory.

4 Complex Ashtekar formalism

We will not go here into problems of approximate solutions of the constraint (292) or
(293). One can meet it in the articles by Ashtekar, Thiemann and their colleagues. We
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describe here only the complex Ashtekar formalism, which is of undoubted interest. It
may be constructed in the following way.
One can continue the fields B¢ and II! to the complex plane, and set

1
b=+i—. 296
"5 (206)

It is possible to select any sign here. We suppose further that only upper, or only down
signs are used. In accordance with (170), (171), (218), (219) the equalities

BY = AP FixPl, T =F-Q, (297)
Va4

. . 1
Q! = +isdll, P =+i—(B* — A?) (298)
Va4

take place. At the same time the expressions (281), (287) are simplified abruptly and take
the form

. 3
Hpy = Hy = LTI F6, (B) 4 2islIA. (299)

The other constraints remain unchanged. Let us note, that under condition b = 4-i/3c an
equality N' = N" takes place in accordance with (278), (284).

Taking into account the form of the quantities ]:}'fk(B) in (288) we conclude, that all
the constraints depend polynomially on the canonical variables B and II¢. This fact
simplifies the theory abruptly. However, in order to return to the real domain (which is
physical) we need to impose reality condition onto the solutions

Bf + Bi" =247, (300)

where A? are expressed by way of (220) in II. This condition may be considered as second
class constraint in complex theory. The existence of this condition is the main problem
in present method. The quantity B{* in (300) is complex conjugated with BY in classic
theory and is Hermitian conjugated with B{ in quantum theory.

In view of complexity of the (300), it is currently preferred to construct the loop
quantum theory of gravity for a real value of the parameter b than for the complex
parameter b = +i/s¢, in spite of the complicated constraint Hj, (or Hj) in real variant of
the theory.

Ashtekar came to his formalism through four dimensional complex selfdual tetrad
connection. Now we turn to this point. Let C4? = —C4P be complex antisymmetric
tetrad tensor on the tangent vector bundle on the space-time with the symmetry group
SO(1,3). Then the tensor *C48 (—*C45) is named dual (anti-dual) with respect to C45,
if

LHOAB — _%nADnBEgDEFGCFG. (301)
Tensor a“P is named selfdual (anti-selfdual), if
. l
aAB — aAB — _inADT]BESDEFG’aFG, (302)
. l
aAB — _ aAB — §7IAD77BE6DEFG’G/FG; (303)
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i. e, if

aab — *aab Zé,abca([))c,

a(O)c — *a(())c — %6cabaab, (304)
aab:_ab_+i6abc (),
CL(O)C — —*CL(O)C — _%gcabaab. (305)

Any antisymmetric tetrad tensor C4? may be decompose in selfdual and anti-selfdual
parts:

CAB = 0MAB | 0(=)AB (306)
C(HAB % (CAB *CAB) _ % <CAB ;77141)77 SDERSCRS> , (307)
C(-)AB % (CAB *CAB) _ % <CAB + 277AD773E6DERSCRS> : (308)
L e. i % (Cab T i) )
OB _ % <O(0)c + %6cabcab> , (309)
and

C(i)ab — :l:*cr(i)ab — q:Z-gabccf(i)(O)

OO — pro(H)0)e _ :l:%gcabcr(:l:)ab‘ (310)
Let us mention that the second equality (310) follows from the first one and vice versa.
So there exist only three independence conditions of selfduality. If we had omitted the ¢
in (307) there would be six independent condition and no tensors fulfilling them would
exist. So, there do not exist real selfdual tensors.

Working with tensors as F’ lf),B , which are antisymmetric both in coordinate indices and
in tetrad indices (e. g. curvature tensor in tetrad representation), one should bear in mind
that along with the conception of selfduality on the tetrad indices A, B one could define
by the corresponding manner also the conception of selfduality on the coordinate indices
pv. In gauge theories one deals with tensors, selfdual in Lorentz coordinate indices. Here
we take an interest in tensors (anti)selfdual in tetrad indices and we shall work with these
(anti)selfdual tensors only. In particular, for (anti)selfdual tensor F;,? we have

7
FAB — q:2nAD77BE8DE'FGFIf;,G- (311)

Let us turn now to the tetrad connection A. Since it is SO(1, 3)-connection, one has

AP = AlpnPP = —ADA (312)
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The corresponding field strength is

Fu'p(A) = FP(Anpp = 0,4, p — 0,ALp + AlpAlp — Aj Al p, (313)

or
FaP(A) = 0,407 — 0,457 + A Pnpp AP — A)PnppAlP (314)
and F| Lf),B = —F ﬁf‘. When the frame is changed, which changes the vectors refereed to

the tetrad basis by the rule

o't = whpa®, (315)

445 is a Lorentz matrix, such that

where w
wipnPPuwlp =nAf  det(wlp) =1, (316)
then the connection changes in accordance with the relation
A:LAB = wADAfF(w_I)FB + w50, (w5, (317)
or, in view of (MT86), (MTS87)
A;LAB = wADwBEAfBE + w? DEauw 1o (318)
and the corresponding field strength changes as
FP(A) = w' pwP g P (A). (319)

Though the transformation (318) is not tensorial, we can at every frame find (anti)dual
quantity with respect to A, if we set

Furthermore,
i*F;ﬁ/B(A) $27I PyPPe EFHF,W : (321)
The *F,P(A) is a tensor as is the case with F;,7(A). So

Fal(A) =w'pwP g F L (A). (322)
But *A;‘B transforms by the rule

* * Z
A'AB — wADwBE APE _ 277AD77 SDEFG’WFHUHLGMWGLv (323)

which differs from (318). Then, if we construct F,,”(*A) from *A just as FP(A) was
constructed from A, we get FAB(*A) # *FP(A) and F P (*A) is not a tensor. Let us note,
that the first term in the r1ght hand 81de of (323) looks as tensor, since the first term in
the right hand side of (318) is of tensor type and (anti)dual transformation converts the
tensor into the tensor. Let us organize (anti)selfdual quantities

iAB
A

(AP £7A405) (324)

l\DI»—t
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]‘ *
FAB(4) = 3 (FaP(A) £°FLP(A)). (325)
From here we get

AB __ +)AB —)AB
AP = AGDAB 4 ALIAB (326)

AB __ +)AB —)AB
FAP = F{DAB 4 AR, (327)
*AS:)AB — iALi)AB, (328)
FOMP(A) = £FP(A). (329)

+)AB :
Flg,,) (A) are tensors, so under frame transformation

Fig1B(A) = v pw p FSPE(A), (330)

uv

and due to (318), (323)

1 ?
Al(fl:)/AB _ wADwBEALﬂ:)DE_Fi (wADnDEauwAE == 577,41)77131576DEFGMFH77HLauw(;L) .(331)

Now we construct FP(A®) from AP 0 the same way as FiP(A) is constructed
from AZ‘B :

FﬁzB(A(i)) = aqu(/i)AB _ 8VA£i)AD + A,(ft)ADnDEAI(/i)EB _ Al(/i)ADnDEA,(ft)EB- (332)
The following proposition is valid

FAB(4) = FoP (A®)), (333)

uv

and, in accordance with (330)
FaP(A®) = wpwP pFRP(AW). (334)

It is true in spite of the fact, that *F},” # F,”(*A) and the transformation rule for AFIAB
(331) differs from the transformation rule for A;'%.

Let us prove (333) for selfdual tensors (in upper indices). Anti-selfdual case is similar.
We have

FlﬁlB(A(Jr)) — aqu(/+)AB + AEL+)AD77DEAI(/+)ED —(p e v) =

=1 (0,407 1+ 9,7407) + i (A27 + A0 o (A7 + A7) — (n+—v) =

2
1
2

1 1
(GMA;‘B + 5A;‘D17DEA,’fB + i*A;‘DnDE*AfD> +
1 * AAB 1* AD EB 1 AD * AEB
+5 0, A" + 5 A UnprA, " + §A“ noe*A,” | — (u+—v). (335)
The next equality is valid:

e apprerGL = — (5BG5DH5EL +0prdprdEc + 0BLODGOEH —
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_6BG5DL6EH - 6BL6DH6EG - 5BH6DG5EL); (336)

and if o’ = —a’", then

e appreranra™ = —2(6padpudpr + 0pudprdpe + 0prdpadpm) a™t. (337)
Using this fact, we get

Ao AYT — (e v) =

0 0
= _577AF77DG5FG’HLA£IL77DE <—§> " MnBNeynpoAL? — (u+— v) =

1 1
= _ZnGMgFG’HLAﬁIL5MNPQA5QUAFUBN = ZnGMgG’FHLgMNPQAiILAZI/DQ77AF77BN =

1

=3 (neNnEPILG + NFPNHQNLN + NrQnENTLP) Al w AL PN =

(UABA,?LA,J,DQUHPULQ + AfBﬁHQAfQ + A,?LULPAZI,DA) —(pe—v) =
- _% (A PnuAL? — AP npALY) — (ne—v) =
= 5 (Af9ngu AL + AP np ALP) = APnpg AP (338)
It means that
0, ANP + %A;‘DnDEA,’fB + %*A;‘DnDE*AfD —(p—v) =
= 0,A)7 + APnpp ALY — (u+—v) = FP(A), (339)

so that in accordance with (335)

Further, the equality

_%UADUBESDEFG’UFHUGLgHLMN = (03768 — SnOnr) (341)
is identical. If ¢*? = —a®4, then
_%W‘D 1" eppran” n  epiana™™ = a”. (342)
The expression
A PnppAYP + APnppt ALY — (1 +— v) (343)

is antisymmetric in A, B due to the (u <> v). So, we have, taking (337) into account,

).
AP npp AP + APnppt ALY — (< v) =
1

{
= - ZnAFnBGgFG’HLUHMnLNgMNQP <— 577QR77D55RSXZA§Z77DEAEP+
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0

+A? npp (- 5

) UERUPSSRSXZAi(Z) —(p+—v) =

l
= gWAFﬁBGé“ rarrn’ Y <77QR5 QMNPE RSXZAL)L(ZAE Py

+77P55PMNQ55RXZA,?RA§Z> —(ps—v) =

1
= —gﬁAFUBGé“FGHLnHM??LN (2 (77MS7INX77PZ + Nuxnnznps + 77MZ77PX77NS) AffZA;quL

+2 (MM RINXTIQz + NMXTINZTIQR + MM ZTINRIQX) AffRAfZ — (u+— y)) =
i
= _ZnAFT]BGSFG’HL(_AfPT/PZAfL + AanXPA5L+
+A gz ATY — AN nx AR — (n+— v)) =

l
= _577AF77BG5FG’HL (A5X77XPA,],DL - AfpnpzAfL — (p+— 1/)) =

= —iUAFUBG6FGHLA5X77XPA5L — (e v), (344)

and, further, by (340)

1 1 1
> <*AfB + Q*A;‘DUDEAEB + §A3D77DE*AEB> —(pe—v) =

2
1 1
= 5 (—577AD773E6DEFG ( 8#145(; + AEHTIHLA,%G — (/L > l/))> =
1 1 1,

= 2 <_§77AD77BE5DEFGF£/G(A)> = 9 F;f)/B(A) (345)

and
]' *
FpP(A™) = 3 (FaP(A) +FP) = FHB(4). (346)

The proposition (333) is proved.

So, one may get the selfdual (anti-selfdual) part of the field strength from the selfdual
(anti-selfdual) part of the connection dy the same way as usual field strength from the
usual connection.

The next proposition is as well true (it is like one which was proved just now, but not
the same). Let PP be any (anti)selfdual quantity with arbitrary transformation rule
under the frame transformations and let

FﬁlB(a(ﬂ:)) _ aual(/j:)AB _ ayagi)AB 4 a&:l:)ADnDEa(:I:)EB _ a&i)ADnDEagi)EB‘ (347)
Now we state that Fj,7(a®)) is (anti)selfdual, i. e. if AP = +a;'?, then *F1P (a®)) =
+F(a®).

Note: if a,(f)AB does not transforms as (anti)selfdual part of the connection A,(f)AB,
then F:},B(a(i)) is not, in general, a tensor, but it is (anti)selfdual.

Corollary: if ¢ = const, ¢ # 1, then Fii%(cA®)) is (anti)selfdual, though it is not a
tensor.

We prove the above statement for selfdual case (anti-selfdual case is similar). Let us
take into account, that

+)AB ! AD BE (+)FG (348)

a,& :—577 N EDEFGQ .
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We have

7
- —UADUBESDBFGF,E,G(CL(J’)) =

2
1 1
=0, <—§UADUBE5DEFGG£+)FG> — 0y <—§77AD773E6DEFGaIS+)FG> —
1
_577AD77BE€DEFG (GLJF)FH??HMCL,(/HMG - az(/-'_)FHnHMa,(j—)MG) =
AB AB
= 9,al AP — 90D —
1 1
_577AD77BE5DEFG <—5UFNUHPSNPRSa,(f)RS??HMal(,JF)MG — (p+— 1/)> =
1
— aual(j-i-)AB _ayaE;r)AB N Z (nADnBEnENé,DEFGSNMRSaL—l—)RSal(j-i-)MG N (M PR 1/)) .
Further
77EN5FDES6NMRSGL+)RS =
= — (MpmNERNGSs + MoRNESTGM + MpsNEMNGr — (R +— S)) al(j)RS =
= —2 (77DM77ER77GS + NprNESNGM + nDsnEMnGR) aﬁr)RS.
Then,
_%UADUBESDEFGFIE,G(@H)) — auaz(/+)AB _ aua,(j)AB‘F
1
+§77AD7IBE ((TIDMWERUGS + NprNESNGM + NDSNEMNGR) CEELJF)RSCL,(,HMG — (p+— 1/))
= 9,alP*P — 0,alDP 4
1
+§ (a£+)BSal(/+)AGnSG + agl-)ABal(/—l—)MG’nMG + agl-)RAal(/-i-)BG’nRG — (> V)) =
_ aﬂal/+)AB _ 8Va£L+)AB + al(;r)ADnDEal(lJr)EB . a£+)AD77DEa£+)EB _ Flﬁ,B(aH)),
SO,
1
Fﬁ,B(aH)) _ _577AB77BE€DEFGF£/G(@(+))-
It may be proved in a similar manner that
_ i _
F;ﬁlB(a( )) = §UABUBE5DEFGF£G(Q( ))-
So, if
1
a/(f)AB _ q:§nADnBE6DEFGa£L:I:)FG,
then
1
FIﬁ,B(a/(i)) — :F_nADnBESDEFG’FIEi:)FG(a(i))-

2

A

It means that if al; 47 is (anti)selfdual, then F:},B(a(i)) is also (anti)selfdual.
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Let us consider now expression for the three-dimensional part of the (anti)selfdual field

strength with the help of (333), (310) (later we adopt a, b, ... =1, 2, 3):
Flsljf)“b(A) _ FSS(A&)) _ auA( Jab AELi nDEAl(I:I:)Eb (e v) =
— 8#A(i)ab + A” Al(ji)cb +A5Li)a(0)n(0)(0)Al(li)(0)b . (,U/ s l/). (356)

Same time with the help of (310)
Ay 0 AP (1 ¢y ) = — A0 ADOP (1 ¢ )

= ABOagBB)O0 _ () 1) = < % aed AGE ) (izebngl(,iW) —(pe—v) =

Since Afbi)Cd = —Al(,i)dc, then

6acd6bng(i)cd 9 (5ab60f5dg Saf §cg sdb §ag scb sdf)A(i) d
9 ab A (£ a + a + 5

and

ALi)(O)aAl(li)(O)b () =

(5“%4 Mo 5o AGRIP 4 599 ALDPTY ACETT — (1 +— v) =

(5@%4 119 A(8 1 ALRIb A(R)aa o ACOBT AGOTa — (1) ¢ 1)) =

= — AP AT — (s v) = ATWATDS® — (4 +— v). (359)

In view of (356)

F;Ef)ab(A) — aqu(/i)ab . 8VA( )ab + 2(A (£) acA Al(li)acAELi)cb). (360)
So,
+)ab o

_ au(2A,(ji)ab)_ay(2AELi)ab)+(2ALi)ac) (2A1(/i)0d)_(2A1(/i)ac)(2AELi)Cb) — ]3—122(2Ag\i)df)’ (361)

where we denote by F ab (2A ) the quantity, which is constructed from 2A in the
same way as the three- dlmensmnal (in frame indices) field strength is Constructed from
SO(3) connection (QAE\i)df ) on the vector bundle above the three-dimensional base with
SO(3) structure. It is clear, that in arbitrary SO(1,3) frame system we have no frame
subsystem, which would be SO(3) frame system above the three-dimensional base. But
the quantity

3
2F(B(4) = 2F(A®)) = pab (24797 (362)

is always so constructed as if we deal with such SO(3) frame subsystem with connection
2Af\i)df , where index A runs only three values.
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Let us note that in some reviews on the loop gravity the connection between Fﬁ)ab(A),

3
F;}S(A(i)) and FZ’;,(2AE\i)df) is displayed insufficiently thoroughly.
Let us now turn to the case, when SO(1, 3) tetrad system is subject to supplementary
condition

el (@) = (@), (363)
where n#(z) is a unit normal to the z° = const hypersurface, which include point z.
Earlier during the construction of the gravitational theory in tetrad formalism we all the

time supposed, that the condition (363) takes place. Then after (45) eEO) = 0. This
condition must hold under frame transformation, so

0= e;(o) = wO et = W0 el (364)
Since det ef # 0, then
w®, = 0. (365)
It follows from
WA pnBPWE ) = AP, (366)

and (365) that
D on”w ) =0, (367)
from where

wa(g) = 0. (368)

o @OuO g = OO (369)

from where (w(o)(o))2 = 1. We assume, that the direction of e} does not depend on time,
then w(o)(g) =1.
So, under accepted restrictions on frame system

w(o)(g) = 1, w(o)a = 0, w“(o) = 0, (370)
and the condition (366) turns into
w“bwcb = §%, (371)

Now three-dimensional part €’ of tetrads make up tetrad system on vector SO(3) bundle
above the surface 2° = const, and matrices w®, realize SO(3) rotation of this system.
The transformation rule for the connection

A = whpwP p ALY + wpnP 8,0 (372)
takes the form
ARt = gAY+ W B, ALY = wep A, (373)
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As it was shown above, three-dimensional part of the connection A% coincides with three-

3
dimensional connection A%, which was built as usual on tetrads e?, formed in three-

dimensional system on the surface 2 = const. In accordance with (309)

]_ - _abc (&
ALi)ab =2 (A% F i AELO) ), (374)
1 .
AELi)(O)c _ 5 (AELO)C + %gcabAzb> ] (375)

We find from (373) that transformation rule for AGB takes the form
(w“cwbdAZd + w?, #wbc T ie“waCdA(O)d) , (376)
but

ww? guw! ;£ = gf (377)

from where in view of (371)

g%t = whwP gwe . (378)
So
gabeye A0 — o b cedf A(0)f (379)
and
ALi)ab _ % (W’ (Azd - iacdeg))f) + W dute) =
= % (Qw“CwbdAZd + w?, wac) = w“cwbdAEf)Cd + %w“ﬁ#wbc. (380)
That why
2A5Li)“b = Wb (2A5Li)0d) + w.d,w’, (381)
and, in particular
2A§i)ab = wwb, (2A§i)0d) + w0, (382)

It means that the quantity (2A§i)ab) in view of (382) and (373) transforms in the same

3
way as A% = A% So the corresponding field strength

3
F?,f (2A§ﬂ:)dc> _ ai(2A](€:|:)ab) _ 8k(2AZ(ﬂ:)ab) 4 2A§:I:)a02Al(€:l:)cb _ 2Algi)ac2A§i)cb (383)

is a three-dimensional tensor like the initial three-dimensional field strength

Fo(A) = 0,AR — 9, A® 4 AT AL — Ao A, (384)
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In view of (361)

3
FREAR) = 2F,7(4), (33)
where Fi(ki)ab is the three-dimensional part of the (anti)selfdual field strength
1 *
FRAE(A) = 5 (Fu/(A) £ FLP(4) (386)

3
constructed of the initial connection AP, Unlike the part F4(2A®Y) of the quantity
(362), which was introduced in arbitrary SO(1, 3) frame and was only formally a three-

3
dimensional field strength, constructed of (2A®¥) we have here F(2A®F)¥)  which
is really three-dimensional field strength on 2° = const surface and is constructed of
new three-dimensional connection 2Agi)df , which transforms as initial three-dimensional
3
connection A% = A%,

So we get the following result. If one constructs on the surface z° = const in a frame
system with e = n” a doubled three-dimensional part 24 of the (anti)selfdual
connection A{4P = 5(A27 £ *A4P) | then this quantity 24 will be, in accordance
with its transformation rule, a new three-dimensional connection, and the new three-

3
dimensional field strength F'2(2A&)) coincides with 2F5™ (A), where Fit)®(A) is the

2

set of all three-dimensional components of (anti)selfdual part of the field strength F%(A),
based on initial connection A;‘B . Let us note that the three-dimensional strength

F§AGY) = 2R (4) = 2F$(A®) (387)

does not coincide with the three-dimensional part of the four-dimensional quantity
Fﬁ,B(QA(i)), which is not a Lorentz tensor in A, B indices, in spite of its selfduality.
One need to avoid confusion between three-dimensional part of F,” (2A®)) and three-

3
dimensional tensor F4(2A&)4).

3
One may represent the three-dimensional tensor F%(2A®¥) and the new three-
; ; ; (&)df
dimensional connection 24,7’ as

3 3
Fip(2ARY) = e 5 (24C07), (388)

2 AH)b — abeg 4(H)e (389)

)

where in accordance with (374)

1 1
A7) = e AT = et (Ag” ¥ z’gabCAgO)C) = Af FiAOF, (390)
Here we put as previously
c 1 cab fab
So
+)e c - 4(0)e
24 = Az FiAl", (392)

44



2A§ﬂ:)ab — 6abC2AZ(:|:)C — 6abc (AZC :F ZAEO)C> )

(393)

Let us compare this result with previously displayed canonical theory, in which Bf

and IT¢ are generalized coordinates and momenta. In view of (22)

A = A , )Fzﬂe (Gie(ﬁo))eﬂ

c*

In special tetrad system (37), (45), (48)

and

Ae = e(() )Flke — (8Z-e,(60)) = NTY, e

)

In view of (MT108) NTY = —Kj, so

In view of (MT348), (MT350)
1
K, = _igik,lmplma

where P'™ are generalized ADM momenta. In view of (MT357)

1
(250)2v/B

where 7;;, are generalized FP momenta. By (398), (399)

_ Im
ik = — Jikgm P,

1
i — ———=K;.
ik (230)\/B F
In view of (75) and (400)

2
(20)V/B

a __ k _ k k
fpi = 27Tik:Qg, = sz zkeaa

Kieh = P2,
In view of (392), (397) and (402)

2AF)C = AC £ 3P

(394)

(395)

(396)

(397)

(398)

(399)

(400)

(401)

(402)

(403)

If we compare (403) with the first equality (297) we see that they coincide, if we change

up and down indices in (297) and set

B =24, (404)
[t means that if b = +i/s, the dynamical variables Bf coincide with double three-
dimensional part of (anti)selfdual component A ()45 (AAB + *AAB) of the connection

AP (upper sign in (403) for antiselfdual and down 51gn for selfdual components). Just
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that circumstance results in abrupt simplification of the constraint Hy under such values
of b. It is clear that it is possible only in tetrad system with ef,, = n*.

Ashtekar got his construction beginning from selfdual tetrad connection and then he
discovered essential simplification of Hy in this case. It became clear later, that equalities
(158), (159) take place, and we lay this in the basis of our consideration. As we see, if
b= j:i;; and B} = 2A§i)a, the relation

3 3
Pi(B) = Fip(2A®) = 27" (4) (405)
takes place, where Fi(ki)ab(A) is the three-dimensional part of the tensor
1
+)AB AB |+ AB
FOAB(A) = 5 (Fu” = FL7) (406)

and ;7';‘,?(8) is specified by (245).

As we noted before, complex tetrad (anti)selfdual formalism is in use more rarely, than
real non(anti)selfdual theory with more involved constraint H; (or H[) because of very
complicated return from complex to real region.

Hereon we complete the description of the different forms of canonical tetrad formalism
in gravitation theory.
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