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1 IntrodutionTetrad formalism (alled also "frame formalism") is widely adopted for elaboration ofonsistent quantum theory of gravitation. Orthonormal tetrad �elds are used instead ofmetri tensor in this formalism. Canonial approah to quantization is of greatest utilityhere.In this pedagogial notes we set out the anonial method for gravitational theory intetrad formalism. We introdue, �rstly, the tetrad �elds formalism in usual form and thenproeed, by means of anonial transformation, to new variables, whih are appliable inthe so-alled "loop theory of gravity", whih is urrently being developed.The present notes may be regard as the sequel to "Quantization of gravitation I.Metri tensor approah" by the same authors. Cross referenes are denoted by letters"MT" (e. g. referene (MT10) means formula (10) of the above named notes).2 The anonial tetrad formalismFurther we use the following notation:�; �; ::: = 0; 1; 2; 3; A; B; ::: = 0; 1; 2; 3; i; k; ::: = 1; 2; 3; a; b; ::: = 1; 2; 3; (1)A;B; :::; a; b; ::: are the tetrad indies; �; �; :::; i; k; ::: are oordinate indies; we take inbrakets a onrete numerial value of the tetrad index (e.g. (0)), and do not do this forthat of a oordinate index. In the framework of the tetrad formalism one introdues ateah spae-time point x� four mutually orthogonal1 normalized vetors e�A(x), forming aloal basis in the spae tangent to the spae-time at that point. The index A numbersvetors, and the index � numbers their omponents in usual oordinate representation.The onditions of the orthonormalizability have the form:e�A(x)g��(x)e�B(x) = �AB; (2)where the �AB is Lorentz metri tensor;�AB = diag(�1; 1; 1; 1): (3)It is assumed that the vetors e�A(x) are linearly independent at eah point (x), i. e. thatdet (e�A(x)) 6= 0: (4)Therefore it is possible to introdue the quantities e�A(x), takingeA� (x)e�A(x) = Æ��; (5)and hene, eA� (x)e�B(x) = ÆAB: (6)Aording to (2), (5), g��(x) = eA� (x)�ABeB� (x): (7)1We use here and in the following the term "orthogonal" in the sense of pseudoriemannian fourdimen-sional metri. 2



The set of the four vetors introdued at eah point is alled pseudo-orthogonal tetrad (orvierbein), and the quantities e�A and eA� are alled frame parameters or tetrads. Apply-ing the tetrad formalism, one onsiders frame parameters eA� (x) as dynamial variables,desribing the gravitational �eld, while the metri g��(x) is to be a funtion of thosevariables (aording to (7)).To de�ne the theory the expression (7) for the g�� is substituted into the ation ofthe gravitational �eld. Varying the obtained ation w. r. t. the eA� (x), one gets the �eldequations, equivalent to Einstein equations. We get the theory, invariant under two groupsof loal transformations: the group of oordinate transformations, at whih the vetors,referred to oordinate basis, transform in usual waya0�(x0) = �x0��x� a�(x); a0�(x0) = a�(x) �x��x0� ; (8)while the frame parameters transform under the rulee0�A (x0) = �x0��x� e�A(x); e0A� (x0) = eA� (x) �x��x0� ; (9)and the group of loal Lorentz transformations, at whih the vetors, referred to the tetradbasis, hange under the formulasa0A(x) = !AB(x)aB(x); a0A(x) = aB(x)!�1BA(x) (10)and the frame parameters transform in aord with the equalitiese0A� (x) = !AB(x)eB� (x); (11)e0�A (x) = e�B(x)!�1BA(x)aB(x): (12)Here the !AB(x) is a matrix of Lorentz transformation, i. e. suh a matrix that�AB!AD(x)!BE(x) = �DE: (13)That's why in aord with the (7), the metri g�� does not hange under Lorentz trans-formations (11), (12).Using the parameters eA� , e�A , it is possible to transform the vetors, referred to theoordinates basis, into the vetors, referred to tetrad basis:aA = eA�a�; aA = e�Aa�; a� = e�AaA; aA = eA�aA: (14)Vetors, onneted by suh relations, are onsidered as di�erent representations of thesame vetor.It is also possible to de�ne tensors with the indies, referred to oordinates or tetradbasis. Suh a tensor TA:::�:::B:::�::: transforms w. r. t. every index like the orresponding vetor.With the help of the parameters eA� , e�A it is possible to hange the indies of tensors (likeof the vetors: A to � and � to A).Analogously to ovariant derivatives, referred to oordinate basis,r�a� = ��a� + ����a�; (15)r�a� = ��a� � a�����; (16)3



one an introdue the ovariant derivatives of the vetors, referred to the tetrad basis:r�aA = ��aA + A�ABaB; r�aA = ��aA � aBA�BA: (17)Aordingly the ovariant derivative of the tensor is de�ned by the ruler�TA:::�:::B:::�::: = ��TA:::�:::B:::�::: + A�ADTD:::�:::B:::�::: + : : :++���ÆTA:::Æ:::B:::�::: � : : :� TA:::�:::D:::�:::A�DB � : : :� TA:::�:::B::::::��� � : : : : (18)The onnetion A�AB is hosen to be determined by the following relation:r� �eA� a�� = eA�r�a�; (19)therefore r�eA� = 0; (20)i. e. ��eA� + A�ABeB� � eA����� = 0; (21)hene, A�AB = eA�����e�B � ���eA� � e�B = eA�����e�B + eA� ��e�B (22)and ���� = e�AA�ABeB� + e�A��eA� : (23)From the usual expression for the �������� = �12g�'(��g'� + ��g'� � �'g��) (24)and the equalities (7), (22), (23) it is possible to derive the relationA�;AB � �ADA�DB = ��ADSD��e�B + �BDSD��e�A � eE� �EDe�ASD��e�B; (25)where SD�� � 12 ���eD� � ��eD� � : (26)The transformation law of the A�AB under the frame transformations is found fromthe requirement r0�a0A � r0�(!ABaB) = !ABr�aB (27)and has the form A0�AB = !ADA�DE(!�1)EB + !AD��(!�1)DB: (28)As follows from (25) A�;AB = �A�;BA; (29)4



in virtue of that the A�;AB an be deomposed in generators of Lorentz group:AA�B(x) = Aa�(x)TaAB; (30)where a = 1; 2; :::; 6, and the TaAB do not depend on the x�.The omplete group of the symmetry has 10 loal parameters (the 4 funtions of theoordinate transformation and the 6 parameters of Lorentz transformation). Thereforeit is neessary to introdue 10 extra onditions, �xing this arbitrariness. Of ourse, itis possible to remove at �rst only a part of the arbitrariness. We will use this in theonstrution of the anonial formalism for that theory. We restrit partly the hoie oftetrads, onneting the tetrads with the oordinate system by the onditione�(0) = n�; (31)where the n� is a normal to the surfae x0 = onst at the given point. Beause ni = 0 itfollows from (31) thate0an0 = e�an� = e�ag��n� = e�ag��e�(0) = �a(0) = 0: (32)Therefore e0a = 0: (33)In �xed oordinate system one has a freedom to perform loal O(3) { transformations oftetrads. Under the hange of oordinates the tetrads also hange so that the onditions(31), (33) always hold. At the given hange of oordinates the hange of the tetrads isde�ned up to O(3) { transformations. The remaining group of all transformations is asemi-diret produt of oordinate group onto O(3) { tetrad group. Sine the onditions(31), (33) do not restrit the metri g�� , these onditions do not violate the equivaleneof lassial theory in terms of frame parameters and the theory in terms of metri tensor.Aording to (MT86), (MT87)Ni = ��iknkn0 ; N = 1n0 ; (34)hene, (3-dimensional oordinate indies are lifted up and pull down with the help of �ikand �ik) Nk = �nkn0 ; n0 = 1N ; nk = �n0Nk; (35)n0 = 1N ; nk = �NkN : (36)Thus, in aord with the (31), (33), (36)e0(0) = 1N ; e0a = 0; ei(0) = �N iN ; (37)eia are not expressed through the N and N i. The quantities eA� are de�ned by the onditione�AeA� = Æ�� (38)5



or e0(0)e(0)0 + e0aea0 = 1; (39)e0(0)e(0)i + e0aeai = 0; (40)ei(0)e(0)0 + eiaea0 = 0; (41)ei(0)e(0)k + eiaeak = Æik: (42)Aording the (37) e0a = 0. Therefore eq-ns (39) and (40) take the forme0(0)e(0)0 = 1; (43)e0(0)e(0)i = 0: (44)In aord with the (37) e0(0) = 1N . So, one gets from (43), (44)e(0)0 = N; e(0)i = 0: (45)Consequently (42) takes the form eiaeak = Æik (46)and the (41) beams ei(0)N + eiaea0 = 0: (47)Aording to the (37) ei(0) = �N iN . Therefore, the (47) takes the formeiaea0 = N i (48)and owing to (46) ea0 = eaiN i: (49)The onditions (46) and (6), i. e. e�AeA� = Æ�� (50)are ful�lled simultaneously. Denote e � det(eai ): (51)We have g�� = eA� �ABeB� = �e(0)� e(0)� + ea�ea�: (52)Aording to the (45) e(0)i = 0. So, it follows from the (52) that�ik = gik = eai eak: (53)6



Hene, aording to (37),gik = �ei(0)ek(0) + eiaeka = eiaeka � N iNkN2 : (54)In agreement with the (MT100) and (54)�ik = gik + N iNkN2 = eiaeka: (55)Eq-ns (53), (55) are in aord with the (46). The quantities g00, g0i, g00, g0i are expressedin terms of N;N i; �ik by formulas (MT100)-(MT102).Thus, all omponents of the 4-dimensional metri are expressed in terms of eai (or eia)and N , N i, while no restritions on the omponents of the metri arise. Owing to (53),(51) � � det(�ik) = e2; e =p�: (56)Let us introdue Qia =p�eia = eeia (57)and de�ne Qai by the equality QaiQka = Æki : (58)Denote Q � det(Qia): (59)Then, owing to (57) Q = e3e�1 = e2 = �; e =pQ: (60)Aording to (57), (58), (60), (46)Qai = e�1eai = 1p� eai : (61)Conversely, from (57), (61) eia = Q� 12Qia; (62)eai = Q 12Qai : (63)In aord with the (53), (55), (62), (63), (60)�ik = QQaiQak; (64)�ik = Q�1QiaQka = ��1QiaQka: (65)In agreement with the (MT355), (65) the Faddeev-Popov (FP) variables qik are expressedsimply through the Qia: qik = ��ik = QiaQka: (66)7



For the further appliations we hoose as initial variables in the tetrad formalism thequantities: Qia, N , N i. Indies a; b; ::: are lifted up and sinking down with the help ofthe tensors �ab = Æab ,�ab = Æab. Therefore it is nonessential where one writes the frameindies a; b; : : :, up or down. Further we do not pay attention to where these indies areplaed, and write Qai � Qia; Qia � Qia: (67)However, this does not onern the indies i; k; :::, whih are lowered and lifted with the�ik, �ik.Evidently, eai �ik = eai eibekb = Æab ekb = eka � eka: (68)But one must have in mind that owing to (68), (57), (61)e2e�1eai �ik = eeka; (69)i. e. e2Qai �ik = Qka; (70)so that Qka 6= �kiQai ; (71)and by (60) Qka = e2�kiQai = Q�kiQai : (72)The �rst-order Lagrangian in tetrad formalism an be obtained in the simplest way fromthe 1st-order Lagrangian in the FP variables (MT372)L(1) = �ik�0qik + (terms without �0(: : :)) : (73)By (73) and (66)L(1) = �ik�0(QiaQka) + (terms without �0(: : :)) == 2�ikQka�0Qia + (terms without �0(: : :)) : (74)We �nd from this the momenta Pai , onjugated with the Qia:Pai = �L(1)�(�0Qia) = 2�ikQka: (75)Owing to that �ik = 12QakPai : (76)Substituting the expressions (76) and qik = QiaQka into the L(1) from (MT372), we obtainthe 1st-order Lagrangian of tetrad formalism. However, it is neessary to take into aountthat from the (75) three new onstraints arise. Sine �ik = �ki, we have by (76)QakPai �QaiPak = 0: (77)8



These relations are equivalent to the equalitiesQkbQi (QakPai �QaiPak) = 0; (78)or QiPbi �QibPi = 0; (79)i. e. �a � "abQibPi = 0: (80)Let us show that the onstraints �a are the generators of the O(3)-rotations of tetradsaround the �xed diretions e�(0) (in a sense of Poisson brakets). Here and later we adoptnotations (if not whatever spei�ed) x0 = ~x0 = 0; x = (0; x1; x2; x3); ~x = (0; ~x1; ~x2; ~x3);Æ3(x � ~x) = Æ(x1 � ~x1)Æ(x2 � ~x2)Æ(x3 � ~x3) as well as Qia(x) � Qia; Qia(~x) � Qs ia andsimilarly for other funtions. Let �a(x) � �a(x1; x2; x3) is an in�nitesimal funtion. Then,at x0 = onst�Z d3x�a(x)�a(x); Qld(ex)� = Z d3x�a"abQkb�Pk; Qs ld� == Z d3x�a"abQkb(�ÆdÆlkÆ3(x� ex)) = ��sa"abdQs lb = "dbaQs lb�sa: (81)Here we have taken into aount thatnQia;Psbko = ÆbaÆikÆ3(x� ex); (82)�Qia; Qskb� = nPai ;Psbko = 0: (83)Analogously,�Z d3x �a�a;Psdl� = Z d3x �a"ab nQkb;PsdloPk == Z d3x �a"abÆbdÆkl Æ3(x� ex)Pk = "ad�saPsl = "dbaPsbl �sa: (84)The equalities (81) and (84) mean that the �a are generators of the O(3) { transforma-tions of tetrads. Therefore the �a ommute (in a sense of Poisson brakets) with all thequantities, invariant w. r. t. suh transformations and omposed only from Qia and Pai .In partiular, if the onstraints H0 and Hi are expressed in terms of Qia and Pai , we haven�a;Hs 0o = 0; (85)n�a;Hs io = 0: (86)Sine, the �a as well as Qia is a frame O(3)-vetor, we get, analogously to (81)�Z d3x �a�a;�sb� = "ba�s�sa (87)9



or Z d3x �a �n�a;�sbo� "ba�Æ(x� ex)� = 0: (88)Beause the �a(x) is an arbitrary funtion we haven�a;�sbo = "ab�Æ(x� ex): (89)Thus, the ommutators of the �a with all other onstrains are again onstrains, andtherefor the �a are �rst lass onstrains. At last, by (66), (76), (83), (82) we get after theqik and �lm being expressed through the Qia, Pai :�qik; qslm� = �QiaQka; Qs lbQsmb � = 0; (90)n�ik; �slmo = 14 �QakPai ; Qs bmPsbl� = 14 �Qak; Qs bmPbl�Pai + 14Qak�Pai ; Qs bmPsbl� == 14Qbm nQak;PsbloPai + 14Qak�Pai ; Qs bm�Psbl == 14Qs bm(�QarQk nQr;Psblo)Pai + 14Qak(��Pai ; Qs r�Qs brQs m)Psbl == �14Qs bm(QarQkÆrl ÆbÆ3(x� ex))Pai � 14Qak(�Æri Æa Æ3(x� ex)Qs brQm)Psbl == �14QbmQalQbkÆ3(x�ex)Pai+14QakQbiQamÆ3(x�ex)Pbl = �14QbmQbk(Qal Pai�QaiPal )Æ3(x�ex) == 14QbmQbkQdiQl (QnPdn �QndPn)Æ3(x� ex) == 14QbmQbkQdiQl "da"aefQnePfnÆ3(x� ex) = 14QbmQbkQdiQl "da�aÆ3(x� ex); (91)i. e. f�ik; �lmg = 14QbmQbkQdiQl "da�aÆ3(x� ex): (92)Further,nqik; �slmo = 12 �QiaQka; Qs bmPsbl� = 12Qbm nQiaQka;Psblo == 12Qs bm nQia;PsbloQka+ 12Qs bmQia nQka;Psblo = 12Qs bmÆilÆbaÆ3(x�ex)Qka+ 12Qs bmQiaÆkl Æab Æ3(x�ex) == 12QbmQkb ÆilÆ3(x� ex) + 12QbmQibÆkl Æ3(x� ex) = 12(ÆkmÆil + ÆimÆkl )Æ3(x� ex); (93)i. e. nqik; �slmo = ÆiklmÆ3(x� ex): (94)Thus, expressing qik and �lm through the Qia and Pbl by (66), (76), we �nd the relations(90), (92), (94). If we substitute now the expressions for the qik and �lm in terms of Qia10



and Pbl into the onstraints H0 and Hi, then, after ommutation of these onstraints, thesame expressions as in the FP-formalism arise, up to the terms, proportional to the �a,beause of the hange of the ommutator (92). Taking into aount the said above andthe formulas (MT328)-(MT330), we get the algebra of the onstraints:nHi;Hs ko = Hk�iÆ3(x� ex) +Hs i�skÆ3(x� ex) + (:::)a�a; (95)nHi;Hs 0o = H0�iÆ3(x� ex) + (:::)a�a; (96)nH0;Hs 0o = �ikHk�iÆ3(x� ex)� �sikHs i�kÆ3(x� ex) + (:::)a�a; (97)n�a;Hs io = 0; (98)n�a;Hs 0o = 0; (99)n�a;�sbo = "ab�Æ3(x� ex): (100)Here all variables are to be expressed through the Qia and Pbl .It is essential that the transition from the Arnowitt-Deser-Misner (ADM) variables toFP ones does not hange the algebra of onstraints, beause it is a anonial transforma-tion. If we go to the tetrad formalism, the number of pairs of anonial variables rises,and new onstraints appear. By (95)-(100) one sees that in the lassial tetrad formalismall onstraints are of the 1st lass. The 1st-order Lagrangian for the losed universe mustnow be written in the form:L(rep)(1) = Pai �0Qia �NH0 �N iHi � �a�a; (101)where �a � �a(x) � �a(x0; x1; x2; x3)jx0=onst are new Lagrange multipliers, and the H0,Hi are the same quantities as in ADM or FP formalisms, but expressed through the Qiaand Pai by (66), (76).The expliit form of the operators Hi and H0 is obtained in the FP formalism (seep. 7 of notes "Quantization of gravitation I. Metri tensor approah"). By (MT365),(MT339), (66), (76), (60), (62), (63) we �nd thatHi = �2q� 14 qkl� 3ri(q� 14�kl)� 3rk(q 14�il)� == �2�� 12QkbQlb� 3ri(� 12 12Qal Pak)� 3rk(� 12 12Qal Pai )� == �Q 12QkbQlb� 3ri(Q 12Qal Pak)� 3rk(Q 12Qal Pai )� = �Qkbelb� 3ri(eal Pak)� 3rk(eaPai )� == �Qkbelbeal � 3riPak � 3rkPai� = Qka � 3rkPai � 3riPak� ; (102)11



by (MT368), (MT339), (60), (63), (62), (66), (76)H0 = �2{q 14 � (qlpqmq � qlmqpq)�lm�pq � q 142{! ( 3R� 2�) == � 2{p�� (QlaQpaQmb Qqb �QlaQma QpbQqb)�12QlPm��12QdpPdq�� �p�2{ � ( 3R� 2�) == 14 � 2{Q 12 ��QkbQlbPkPl � (QkbPbk)2�� q 122{! ( 3R� 2�); (103)where the 3R must be expressed in terms of the Qka.Let us represent the Hi in slightly di�erent form. By (102)Hi = Qbk( 3rkPbi � 3riPbk) = Qbk(�kPbi � 3�lkiPbl + Abk Pi � �iPbk + 3�likPbl � Abk Pk) == Qbk(�kPbi � �iPbk) + (QbkAbk )Pi � Ai"abQakPbk; (104)where we take Aabi = Ai"ab (105)with the Aabi = Aiab being onstruted from the eai , eik, Æik, Æik like the A�AB are on-struted from the eA� , e�A, �AB, �BA. As it is seen from (25), (26), (37), (45), (48),Aabi = AAB� ���=i;A=a;B=b: (106)By (80) Hi = Qbk(�kPbi � �iPbk) + (QbkAbk )Pi � Ai�: (107)Further, by (106), (25), (26)QbkAbk = eebk(Sblkel � Slkelb � eibSdileledk); (108)where it is taken into aount (37), (102);QbkAbk = eebkSblkel � eebkSlkebl � eeibSbieel = 2eebkSblkel == eebk(�lebk � �kebl )el = eebk(�lebk)el � eebk(�kebl )el == (�le)el + eebkebl�kel = (�le)el + e�lel = �l(eel) = �lQl; (109)by (109), (107) Hi = Qbk(�kPbi � �iPbk) + (�lQlb)Pbi � Abi�b; (110)i. e. Hi + Ai� = Qbk(�kPbi � �iPbk) + (�kQkb)Pbi : (111)The linear ombination Hi + Ai� of the onstraints is also the onstraint. It hasthe simple geometrial sense. Let us show that the Hi + Ai� is the generator of suh12



a 3-dimensional transformations of oordinates on the surfae x0 = onst, that do nothange tetrad basi vetors as geometrial objets. We have at in�nitesimal "i � "i(x)�Z d3x "i(Hi + Ai�); Qsak� = �Z d3x(�l(QblPbi)�Qbl�iPbl )"i; Qsak� == � Z d3x(�l(QblÆabÆki Æ3(x� ex))�Qbl�i(ÆbaÆkl Æ3(x� ex)))"i == � Z d3x(�l(QalÆ3(x� ex))"k �Qak(�iÆ3(x� ex))"i) == Z d3x(Qal�i"k � �i(Qak"i))Æ3(x� ex) = Qsal�sl"sk � �si(Qsak"si); (112)�Z d3x "i(Hi + Ai�);Psak� = �Z d3x "i ��l(QblPbi)�Qbl�iPbl� ;Psak� == Z d3x "i ��l(ÆbaÆlkÆ3(x� ex)Pbi)� ÆbaÆlkÆ3(x� ex)�iPbl� == Z d3x �"i�k(Pai Æ3(x� ex))� "i(�iPak)Æ3(x� ex)� == � Z d3x (Pai (�k"i) + (�iPak)"i)Æ3(x� ex) = �Psai �sk"si � (�siPsak)"si: (113)Thus, �Z d3x "i(Hi + Abi�b); Qsak� = Qsal�sl"sk �Qsak�si"si � "si�siQsak; (114)�Z d3x "i(Hi + Abi�b);Psak� = �Psai �sk"si � "si�siPsak: (115)On the other side, by the transformation law of 3-tensors, as xi ! x0i = xi + "i(x), whileunmoved vetors of tetrad basis, taking into aount (MT232) one getsQ0ak(x) = Q0ak(x0 � ") = �"i�iQak +Q0ak(x0) == �"i�iQak +p� 0(x0)(e0ak(x0)) = �"i�iQak +p�(x)(1� �i"i)�eal(x)�(xk + "k)�xl � == �"i�iQak +p�(x)eal(x)�p�eak�i"i �p�eal�l"k == Qak(x) +Qal�l"k �Qak�i"i � "i�iQak: (116)Sine, further, the PaiQia transform as p�, and Qia = p�eia, the Pai is a universal 3-tensor.Therefore, at the onsidered hange of oordinates,P0ak (x) = �"i�iPak + P0ak (x0) = �"i�iPak + Pal (x)�(x0l � "l)�x0k == �Pai (x)�k"i � "i�iPak + Pak(x): (117)So, at the transformation of oordinatesÆQak � Q0ak(x)�Qak(x) = Qal�l"k �Qak�i"i � "i�iQak; (118)13



ÆPak � P0ak (x)� Pak(x) = �Pai (x)�k"i � "i�iPak: (119)Comparing (114), (115) with the (118), (119), we see that the quantities Hi + Abi�b areindeed the generators of the suh 3-dimensional transformations of oordinates on thesurfae x0 = onst, whih do not hange the position of the vierbein basi vetors in thespae. W. r. t. these transformations the H0 is a stable density of a 3-invariant, and theHi and Abi�b are the stable densities of oordinate 3-vetors. So, repeating the derivationof the equalities (MT268), (MT269), we �nd thatnHi + Abi�b;Hs ko = �Hs i�skÆ3(x� ex) +Hk�iÆ3(x� ex); (120)nHi + Abi�b; Ask�so = �As i�s�skÆ3(x� ex) + Ak��iÆ3(x� ex); (121)nHi + Abi�b;Hs 0o = H0�iÆ3(x� ex): (122)It follows from (120), (122), due to (98), (99), thatnHi;Hs ko = �Hs i�skÆ3(x� ex) +Hk�iÆ3(x� ex)� nAbi ;Hs ko�b; (123)nHi;Hs 0o = H0�iÆ3(x� ex)� nAbi ;Hs 0o�b: (124)This is a detailed elaboration of the formulas (95), (96). It follows also from (86), (89)thatnHi + Abi�b;Hs k + Ask�so = �(Hs i+As i�s)�skÆ3(x� ex)+ (Hk+Ak�)�iÆ3(x� ex): (125)By (81) it an be written, further,�Z d3xAbi�b"i; Qs ld� = Z d3xAbi"i��b; Qs ld� = "dbaQs ldAsai "si = "siAsdbi Qs lb; (126)analogously, �Z d3x "iAbi�b;Psak� = Z d3x "i nAbi ;Psako�b + "siAsabi Psbk: (127)By analogy with the fHi + Abi�b;Hs 0g we havenHi + Abi�b;�sao = �a�iÆ3(x� ex): (128)From the equalities (114), (115) and (126), ( 127) we �nd that�Z d3x "iHi; Qsak� = Qsal�sl"sk �Qsak�si"si � "si(�siQsak + Asabi Qskb); (129)�Z d3x "iHi;Psak� = �Psal �sk"sl � "si(�siPsak + Asabi Psbk)� Z d3x�"i nAbi ;Psako�b� : (130)The formulae (129) di�ers from (114) by the hange of the usual derivative �iQak ontoovariant one only in tetrad index. This means that the quantities Hi are the generatorsof the suh variations of the funtions Qib, whih are generated by the hange of theoordinates, arrying with itself the vierbein system via parallel transfer. The samefollows from (130) w. r. t. the Pak, if one adopts the onstraint �a = 0.14



3 Tetrad variables having the property of onnetion,"loop variables"With the help of anonial transformation one an go from the variablesQia, Pai , introduedabove, to the variables, having the form of a onnetion. This allows then to apply themethods, used in the gauge �eld theory, what leads to the so alled "loop quantum gravitytheory". Let us onsider the main ideas related to this formalism. We use the vierbeinframe, whih is related to the oordinate frame as desribed in se. 2. Let us start fromdynamial variables Qia, Pai , introdued in (57) and (75). First of all, let us onstrut theappropriate lassial anonial formalism.Earlier (see eq-ns (25), (26)), the following formula for the oeÆients of vierbeinonnetion was obtained:A�;AB � �ADAD� B = �A�;BA = �ADSD��e�B � �BDSD��e�A � eE� �EDe�ASD��e�B; (131)where SD�� = 12 ���eD� � ��eD� � : (132)In the used vierbein frame, where e�(0) = n�; e0a = 0; e(0)i = 0, the 3-dimensional partof the onnetion (131) has the formAi;ab = �aDSD�ie�b ��bDSD�ie�a � eEi �EDe�aSD��e�b = ÆadSdkiekb � ÆbdSdkieka� eiÆdekaSdklelb; (133)i. e. Ai;ab = Sakiekb � Sbkieka � eiekaSklelb: (134)Here Saki = 12 (�keai � �ieak) : (135)It is taken into aount that 3-dimensional indies a; b; : : : are lifted up or pulled downwith the help of the symbols Æab, Æab , and therefore there is no di�erene between up anddown indies a; b; : : :. It is seen that with our hoie of vierbein frame the 3-dimensionalpart Ai;ab of the onnetion is onstruted from vierbein parameters eia,eai and symbolsÆab, exatly in the same way as the onnetion Am;AD is omposed from emA , eBm and thesymbols �AB, i. e. Ai;ab = 3Ai;ab; (136)where the 3Ai;ab is vierbein onnetion on the 3-dimensional hypersurfae x0 = onst,orresponding to the loal invariane group SO(3). Aordingly,Ai;ab = Aiab = Aiab = �Ai;ba: (137)Obviously, one an also write Aiab = "abAi ; (138)15



where Ai = 12"abAiab = 12"ab �2Sakiekb � eiekaSklelb� : (139)Here we have taken into aount that "abSaki = �"abSbkieka and used the (133).Let us express the quantities Ai in terms of the variables Qia, Qai . By the de�nitions,introdued above eia = Q� 12Qia; eai = Q 12Qai ; (140)where Q = det �Qia� ; QiaQai = Æik: (141)Evidently, �iQ 12 = 12Q� 12QQak�iQka = 12Q 12Qak�iQka; (142)�iQak = �Qal ��iQlb�Qbk: (143)The equality (143) is obtained by the di�erentiation of the relation QakQkb = Æab , and the(142) is true beausedet(Qia+ dQia) = �the algebrai omplement of the matrix Qlb�ai dQia = QQai dQia: (144)By (139), (135), (140), (142) we obtain2Ai = "ab�(�keai � �ieak) ekb � eka 12 ��kedl � �ledk� elbedi� == 14"ab�4Qkb�kQai + 2QaiQkbQfm�kQmf � 4Qkb�iQak � 2ÆabQfm�iQmf ��QbiQkaQfm�kQmf � 2Qka(�kQdl )QlbQdi +QaiQlbQfm�lQmf + 2Qka(�lQdk)QlbQdi�: (145)Due to "ab = �"ba, the term, ontaining the Æab , does not ontribute here, and some otherterms oinide. Therefore,Ai = 12"ab �QaiQkbQdl �kQld +QlaQkbQdi �kQdl +Qkb�kQai +Qak�iQkb� : (146)Studying the properties of the ontinuation of the gravitational �eld into the omplexregion (that we will onern later), A. Ashtekar has found that the following hange ofvariables is a anonial one: Q0ia = Qia; (147)P0ai = Pai + bAai ; (148)where the b is an arbitrary onstant parameter, i. e. that�Q0ia ; Qs 0kb � = �Qia; Qska� = 0; (149)16



nQ0ia ;Ps0ba o = nQia;Psbko = ÆikÆbaÆ3(x� ~x); (150)nP0ai ;Ps 0bko = nPai ;Psbko = 0: (151)Sine the Aai depends only on the Qla,and not on the Pal , the equalities (149) and (150)are ful�lled trivially, but the orretness of the relation (151) is a very nontrivial fat.Indeed,nP0ai ;Ps 0bko = nPai + bAai ;Psbk + bAs bko = nPai ;Psbko + bnAai ;Psbko + bnPai ; Asbko : (152)We have taken into aount that nAai ; Asbko = 0 beause the Aai depends only on the Qia.Thus, in order that the transformation (147), (148) were anonial, the followingequality must be ful�lled:nPai ; Asbko+ nAai ;Psbko � nPai ; Asbko� nPsbk; Aaio = 0: (153)By the de�nition of Poisson brakets one hasnPai ; Asbko = Zt0=onst d3x0 � ÆPai (x)ÆQl(x0) ÆAbk(ex)ÆPl(x0) � ÆAbk(ex)ÆQl(x0) ÆPai (x)ÆPl (x0)� ; (154)where x � (x1; x2; x3), and the Æ(:::)Æ(:::) means the 3-dimensional funtional derivative. Owingto ÆPai (x)ÆQl(x0) = 0; ÆPai (x)ÆPl (x0) = Æa ÆliÆ(x� x0); (155)we get nPai ; As lko = �ÆAbk(ex)ÆQla(x) : (156)Thus, the relation (153) takes the formÆAbk(ex)ÆQai (x) � ÆAai (x)ÆQbk(ex) = 0: (157)As in the ase of usual funtions fk(x), when the equality �ifk � �kfi = 0 is equivalentto the existene of suh a '(x) that fi = �i', the relation (157) is ful�lled then and onlythen when there exists a funtional F [Qia℄ of funtions Qia(x) for whihAai (x) = ÆFÆQia(x) : (158)Suh a funtional does exist and is equal toF = 12"ab Zt=onst d3xQiQak�iQkb : (159)
17



The possibility to represent the ompliated expression like (146) in the form (158), (159)is highly nontrivial. A. Ashtekar disovered this, going by iruitous way (this will beonsidered briey later). Now we simply hek the equality (158) at the ondition (159)diretly. Let us make this.Under the variation ÆQi of the �eld Qi the variation of the funtional F [Qi(x)℄ isdetermined, in aordane with (159), by the equality2ÆF = "ab Z d3x �ÆQiQak�iQkb +QiÆQak�iQkb +QiQak�iÆQkb� == Z d3x �"abÆQiQak�iQkb + "dabQld(�Qai ÆQiQk)�lQkb + "baQkbQai �kÆQi� == Z d3x�"abQak�iQkb � "dfgQldQfiQk�lQkg + "ab(�kQkbQai +Qkb�kQai )� ÆQi: (160)Here we use (143) and perform the hange"baQkbQai �kÆQi �! �"ba ��k(QkbQai )� ÆQi = "ab �(�kQkb )Qa +Qkb�kQai � ÆQi; (161)dropping the nonessential here surfae term in the integral. Therefore2 ÆFÆQi = "ab �Qak�iQkb +Qai �kQkb +Qkb�kQai �� "dfgQldQfiQk�lQkg : (162)Let us show that this oinides with the (146). Take into aount that 12"ab"abh = Æh,"ab = �"ba and, hene,�"dfgQk = �12"ab"dfg"abhQhk = 12"ab"dfg"bahQhk == 12"ab �ÆdbÆfaÆgh + ÆdaÆfhÆgb + ÆdhÆfbÆga � ÆdaÆfbÆgh � ÆdbÆfhÆga � ÆdhÆfaÆgb�Qhk == "ab �ÆdbÆfaÆgh + ÆdaÆfhÆgb + ÆdhÆfbÆga�Qhk: (163)We used the known formula expressing the "dfg"bah in terms of the produts of the Æab-symbols. By (162), (163) we have2 ÆFÆQi = "ab�Qak�iQkb +Qai �kQkb +Qkb�kQai++ �ÆdbÆfaÆgh + ÆdaÆfhÆgb + ÆdhÆfbÆga�QldQfiQhk�lQkg� == "ab�Qak�iQkb +Qai �kQkb +Qkb�kQai++QlbQaiQhk�lQkh +QlaQhiQhk�kQkb +QlhQblQhk�lQka�: (164)Evidently,QlhQbiQhk�lQka = QbiÆlk�lQka = Qbi�kQka; "ab �Qai �kQkb +Qbi�kQka� = 0: (165)Therefore some terms in the (164) are anelled. Further,"abQlaQhiQhk�lQkb = �"abQlaQhi �lQhkQkb = "abQlbQhiQka�lQhk: (166)Hene, ÆFÆQi = 12"ab �Qak�iQkb +Qkb�kQai +QlbQaiQhk�lQkh +QlbQhiQka�lQhk� : (167)18



That oinides with the (146). Thus the equality (158) is proven under the ondition(159), and, therefore, the relations (147), (148) de�ne the anonial transformation.Having performed the anonial transformation (147), (148) we an then perform othertwo transformations, anonial harater of whih is evident. Let us putQ00ia = bQ0ia = bQia; (168)P00ai = 1bP0ai = Aai + 1bPai ; (169)and then Bai = P00ai = Aai + 1bPai ; (170)�ia = �Q00ia = �bQia: (171)We will onsider the Bai as new anonial oordinates, while the �ia as anonial momenta.The transition from the Qia, Pai to the Bai , �ia is a anonial transformation. This trans-formation was proposed by A. Ashtekar. The onstant b is alled the Barbero-Immirziparameter. It an take any value.Let us lear up how the quantity Pai transforms under the hange of oordinates, andalso under the hange of vierbeins, whih does not violate the ondition e�(0) = n�. By(76) Pai = 2�ikQka; (172)and by the (MT357) �ik = � 1(2{)2p�Jik;lmP lm: (173)and in aordane with (MT163)P lm = �2Jlm;rsKrs: (174)Due to Jik;lmJlm;rs = Ærslm = 12 (Ærl Æsm + ÆrmÆsl ) ; (175)we get �ik = �� 1(2{)2p� Jik;lm���2Jlm;rs�Krs = 12{p�Kik (176)and in aord with (172)Pai = 2� 1(2{)p�Kik�Qka = 22{ Qkap�Kik (177)or Pai = 22{ ekaKki: (178)19



Sine the eka, Kki are stable 3-dimensional tensors w. r. t. oordinate transformations andtensors (in partiular, vetor and invariant) w. r. t. the 3-dimensional vierbein SO(3){ transformations, the Pai is a stable oordinate vetor and a vierbein SO(3)- vetor.Therefore, the quantity Pabi � Pai b = "abPi (179)is a vierbein SO(3) { tensor and hanges under the SO(3) { transformations of vierbeinsaording to the rule bP0i = b! bPib!�1; (180)where the bPi is the matrix with elements Piab, and the b! is the matrix of SO(3) {transformation, suh that b!b!T = I: (181)At the same time the quantity Aai b � Aiab = "abAi (182)is a 3-dimensional SO(3)- onnetion (as was lari�ed above). So, it transforms underthe SO(3) { transformations of vierbeins as follows:bA0i = b! bAib!�1 + b!�ib!�1: (183)This formulae is ompletely analogous to the orresponding relation of the gauge �eldtheory (with the replaing of SU(3)-matries by SO(3)-matries, and 4-dimensional spae-time by 3-dimensional spae). The formulae (183) an be got from the requirement thatthe ovariant derivative of the vierbein vetor3riaa = �iaa + Aiab ab (184)has to be a vierbein vetor, i. e. that the following relation has to be valid:3ri(!abab) = !ab 3riab: (185)Beside of this, the oeÆients of the onnetion Aiab are stable vetors w. r. t. 3-dimensional oordinate transformations.Let us form now the matrix bBi with the elementsBai b = Biab = "abBi : (186)By (170) one has bBi = bAi + 1b bPi (187)and, by the (187), (180), (183), under the SO(3) { transformation of vierbeins, one getsbB0i = b! bBib!�1 + b!�ib!�1: (188)In other words, the quantities Biab transform under the SO(3) { hange of vierbeins in thesame way as the Aiab, i. e. the Biab are the oeÆients of new SO(3) { onnetion. This20



transition to the generalized oordinates, having the harater of the onnetion, was thegoal of the whole onstrution. Let us remark that under the 3-dimensional oordinatetransformations the quantity Biab behaves as a stable vetor beause the Aiab and thePia have this property.With the help of the onnetion bBi one an onstrut ontour integrals in the way,analogous to the onstrution of the so alled Wilson-Polyakov integrals in gauge theory.Let us de�ne, at �rst, the notion of ontour integral with the onnetion bAi. Let usparameterize some urve � (ontour) on the hypersurfae t = onst with the help of theequality xi = f i(�) where the � is the parameter varying along the ontour. We assumethat the derivatives �xi=�� do not be equal to zero simultaneously nowhere.Let aa(�) to be a vierbein vetor on the ontour � at the point �. We de�ne a paralleltransportation of a vetor aa(�) to in�nitesimally lose point � + d� of the ontour � sothat the quantity aa(� + d�) resulting under the transportation be a vetor at the point� + d�. This ondition is ful�lled if one takesaa(� + d�) = aa(�)� Aai b(x(�))ab(�)dxi(�)d� d�: (189)Indeed, let us write the equality (189) in the forma(� + d�) = a(�)� bAi(x(�))a(�)dxi(�)d� d� (190)and take into aount that under the hange of vierbeins we geta0(�) = b!(x(�))a(�); (191)bA0i(x(�)) = b!(x(�)) bAi(x(�))b!�1(x(�)) + b!(x(�))�b!�1(x)�xi ����xi=xi(�) == b!(x(�)) bAi(x(�))b!�1(x(�))� �b!(x)�xi ����xi=xi(�)b!�1(x(�)): (192)We obtain after the hange of vierbeinsa0(� + d�) = a0(�)� bA0i(a(�))a0(�)dxi(�)d� d� = b!(x(�))a(�)�� b!(x(�)) bAi(x(�))b!�1(x(�))� �b!(x)�xi ����xi=xi(�)b!�1(x(�))!!(x(�))a(�)dxid� d� == b!(x(�))a(�) + �b!(x)�xi ����xi=xi(�)dxid� d�a(�)� !(x(�)) bAi(x(�))a(�)dxid� d� == b!(x(� + d�))a(�)� !(x(�)) bAi(x(�))a(�)dxid� d�: (193)At the neessary 1st order in the d� we havea0(� + d�) = b!(x(� + d�))�a(�)� bAi(x(�))a(�)dxid� d�� = b!(x(� + d�))a(� + d�): (194)Thus we get the vetor form of the transformation:a0(� + d�) = b!(x(� + d�))a(� + d�): (195)21



Let us divide the ontour � in in�nitesimally small intervals and, repeating the paralleltransportation along the one interval in�nitely many times, de�ne the vetor a(�) at allpoints of the ontour, starting from a given value of this vetor at one point. The obtainedvetor funtion a(�) � aa(�), in aordane with the (190), satis�es at every point of theontour the following ondition:a(� + d�)� a(�) + bAi(x(�))ba(�)dxid� d� = 0; (196)or �da(�)d� + bAi(x(�))ba(�)dxid� � d� = 0: (197)Due to the arbitrariness of the d� we get the di�erential equationda(�)d� + bAi(x(�))a(�)dxid� = 0; (198)or daa(�)d� + bAiab(x(�))ab(�)dxid� = 0: (199)This equation is alled the equation of parallel transportation of the vetor along theurve.If two points x(1) and x(2) are onneted by two di�erent urves, then the paralleltransportation from the point x(1) to the point x(2) an give di�erent results. In partiular,the vetor an hange after the parallel transportation along the losed ontour to theinitial point.The equation (198) is linear and therefore its solution an be written in the followingform: a(�) =W (�; �1;�)a(�1); (200)where the a(�1) is the given value of the vetor a at the initial point x(�1) of the ontour�, and the W (�; �1;�) is a matrix depending on the ontour �, its initial point �1 and thepoint �, to whih the vetor a is transported. Substituting the (200) into the (198), wesee that the matrix W (�; �1;�) satis�es the equationdW (�; �1;�)d� = � bAi(x(�))W (�; �1;�)dxi(�)d� (201)at the initial ondition W (�; �1;�) = bI; (202)where the bI is the unit matrix.The equation (201) has the same form as the Shroedinger equation in quantum me-hanis. But we have instead of the time the parameter �, and the quantity� bAi(x(�))dxi(�)d�instead of the �iH.
22



Therefore the solution of the equation (201) an be, as in the ase of Shroedingerequation, written formally as an ordered exponent of the integral over the points of theontour: W (�; �1;�) = P � !�1 exp0�� �Z�1 d~�dxi(~�)d~� bAi(x(~�))1A : (203)Here the symbol P � !�1 means the ordering of quantities, depending on points of theontour �, from the �1 on the right to the � on the left (analogously to the ordering intime in the ase of Shroedinger equation). The integral (203) is the analog of the Wilson-Polyakov ontour integral in the gauge �eld theory.Under the SO(3) { transformations of the vierbein frame,e0ai = !abebi (204)the equality a(�) = W (�; �1;�)a(�1): (205)turns into the a0(�) = W 0(�; �1;�)a0(�1); (206)where a0(�) = b!(x(�))a(�); a0(�1) = b!(x(�1))a(�1); (207)so that b!(x(�))a(�) =W 0(�; �1;�)b!(x(�1))a(�1); (208)or a(�) = b!�1(x(�))W 0(�; �1;�)b!(x(�1))a(�1): (209)Comparing this with the (205), we �nd the transformation law of the matrix W (�; �1;�)under the hange of the vierbein frame:W (�; �1;�) = b!�1(x(�))W 0(�; �1;�)b!(x(�1)); (210)or W 0(�; �1;�) = b!(x(�))W (�; �1;�)b!�1(x(�1)): (211)Let now the ontour � to be losed (be a loop), so thatx(�2) = x(�1); (212)where the x(�2) is the �nal point of the ontour. ThenW 0(�2; �1;�) = b!(x(�2))W (�2; �1;�)!�1(x(�1)) = b!(x(�1))W (�2; �1;�)!�1(x(�1)) (213)23



and trW 0(�2; �1;�) = trW (�2; �1;�); (214)where the trW is the trae of the matrix W .Thus, the trae of the ontour integral over the points of losed ontour is invariantunder the SO(3) { transformations of vierbeins. By the vetor harater of the quantityAiab w. r. t. 3-dimensional oordinate transformation the trae of suh a ontour integralis also invariant under these oordinate transformations, if the ontour � as a geometrialobjet is not displaed. But if the oordinate frame arries the ontour with itself underthe transformation, so that the equation of the ontour in new oordinates remains of thesame form as in initial oordinates, then the trae of the orresponding integral hanges.New onnetion Biab transforms under the hange of vierbein and oordinate framesin the same way as the Aiab. So the ontour integral onstruted from the onnetionBiab, W (�; �1;�; [B℄) = P � !�1 exp0�� �Z�1 d� dxi(�)d� bBi(x(�))1A (215)has the same properties as the ontour integral (203) with the onnetion Aiab. In par-tiular, the trae of the integral (218) taken over the losed ontour �,trW (�2; �1;�; [B℄) at xi(�1) = xi(�2) (216)is invariant under the transformation of the 3-dimensional vierbein frame and also 3-dimensional oordinate frame, if the ontour is not displaed as a geometrial objet atthe hange of oordinates. Here as in the ase of the gauge �eld, the omponents of theonnetion Biab are generalized anonial oordinates (after the anonial transformation(170), (171), while the onnetion Aiab was a ompliated funtion (146) of the anonialoordinates Qia before the anonial transformation.Thus, one an easily onstrut from the anonial variables Biab any number of quan-tities with the above mentioned invariane properties. This is a basi point of the "loopquantum gravity".In terms of the variables Bai , �ia the anonial form of the ation is as follows:Srep(B;�)(1) = Z d4x ��ia�0Bai �NH0 �N iHi � �a�a� ; (217)where the H0, Hi and �a are obtained from the same quantities, de�ned by the equalities(103), (102), (80), with the help of the substitutionQia = �1b�ia; (218)Pai = bBai � bAai ��Qia=� 1b�ia; (219)that follows from the (170), (171). Here, by (146) we haveAi ��Qia=� 1b�ia = "ab ��ai�kb�dl �k�ld +�la�kb�di �k�dl +�kb�k�ai +�ak�i�kb� ; (220)24



where the �ai is de�ned by the equality�ka�ai = Æki (221)(�ai is not obtained from the �ka by the lowering of the index with the �ik).Let us express expliitly the onstraints �a, H0, Hi in terms of the Bai and �ia. By(80), (219), (218) �a = "abQibPi = �"ab�ibBi + "ab�ibAi : (222)By (220) we have"ab�ibAi = 12"ab�ib"fg ��fi�kg�dl �k�ld +�lf�kg�di �k�dl +�kg�k�fi +�fk�i�kg� == 12 �ÆafÆbg � ÆagÆbf��ib ��fi�kg�dl �k�ld +�lf�kg�di �k�dl +�kg�k�fi +�fk�i�kg� == 12�ib��ai�kb�dl �k�ld +�la�kb�di �k�dl +�kb�k�ai +�ak�i�kb���bi�ka�dl �k�ld � �lb�ka�di �k�dl � �ka�k�bi � �bk�i�ka� == 12��ka�dl �k�ld +�la�kb�k�bl +�kb�ib�k�ai +�ak�ib�i�kb��3�ka�dl �k�ld � �lb�ka�k�bl � �ka�ib�k�bi � �k�ka�: (223)Due to �dl �k�ld = ��ld�k�dl ; �ak�ib�i�kb = �(�i�ak)�ib�kb ; (224)some terms are aneled. Beside of that,�la�kb�k�bl = �(�k�la)�kb�bl = ��l�la: (225)Therefore, "ab�ibAi = ��l�la: (226)By (222), (226) �a = ��k�ka � "ab�ibBi = � ��k�ka � �kbBkba� ; (227)where Bkba = "baBi : (228)Let us represent this in a slightly di�erent form. Let � = det�ia. By (218), (60)� = Q � detQia = �b�3�: (229)and eia = QiapQ = �1b �iap�b�3� = �b 12 �iap�� : (230)
25



Hene the �ia=p�� is, as the eia, a stable 3-dimensional tensor. One an de�ne the 3-dimensional ovariant derivative of that tensor with the vierbein onnetion Biab, denotingit by 3Brk � �iap���. Then we writep��3Br� �iap��� = p����i� �iap���+ 3�iik �kap�� � �iap��Biba� == �i�ia +p����i 1p����ia + 3�iik�ia � �ibBiba: (231)However, by the (229)p����i 1p����ia =p�� ��i 1p���ia = � 1p�� ��ip���ia = � 3�kki�ia: (232)Therefore p��3Bri� �iap��� = �i�ia � �ibBiba; (233)and the onstraint �a, (227), an be written in a ovariant form�a = �p��3Bri� �iap��� : (234)To transform the H0 and Hi let us introdue the quantity3F abik(A) = �iAkab � �kAiab + Aadi Adbk � Aadk Adbi ; (235)onstruted from the 3-dimensional vierbein onnetion Aabk similarly to the �eld strengthtensor onstrution from vetor potentials in nonabelian gauge �eld theory. The quantity3F abik(A) is simply related with the urvature tensor 3Rlm;ik of the 3-dimensional hypersurfaex0 = onst. Indeed, the 3-dimensional analog of the equality (22) has the formAabi = Aiab = e�l 3�limemb + eal �ielb: (236)Substituting the (236) into the (235), we �nd that3F abik(A) = �i �e�l 3�lkmemb + eal �kelb�++�e�l 3�limemd + eal �ield��edn 3�nkqeqb + eqn�kenb�� (i ! k); (237)where the (i ! k) denotes a quantity obtained from a given one by the exhange i �! k,k �! i. Further,3F abik(A) = eal ��i 3�lkm + 3�lim 3�mkq� eqb + (�ieal ) 3�lkmemb + eal 3�lkm�iemb + (�ieal )�kelb++eal �i�kelb + eal 3�lim�kemb � (�ieal ) 3�lkqeqb � (�ieal )(�kelb)� (i ! k): (238)Some terms here are aneled eah with other or with the (i ! k) beause in the sumthey are symmetri w. r. t. the exhange i �! k, k �! i. Therefore3F abik(A) = eal ��i 3�lkm + 3�lim 3�mkq � (i ! k)� eqb: (239)26



At the same time, 3Rlm;ik = �i 3�lkm � �k 3�lim + 3�liq 3�qkm � 3�lkq 3�qim; (240)so that 3F abik(A) = eal 3Rlm;ikemb ; (241)i. e. the strength 3F abik(A) is the 3-dimensional urvature tensor, related in two indies tothe vierbein, with 3F abik(A) = � 3F baik(A).Let us de�ne the quantity 3F aik(A) by3F abik(A) = "ab 3F ik(A): (242)From the equalities (235), (241) and Aiab = "abAi we get3F ik(A) = �iAk � �kAi � "abAaiAbk = 12"abelaemb 3Rlm;ik; (243)where 3Rlm;ik = �ln 3Rnm;ik with3Rlm;ik = 3Rik;lm = � 3Rki;lm = � 3Rik;ml: (244)Together with the 3F abik(A), 3F ik(A) let us introdue the quantities 3F abik(B), 3F ik(B), on-struted from the onnetion Biab in the same way as the 3F abik(A), 3F ik(A) are onstrutedfrom the Aiab: 3F abik(B) = 3F abik(A)���Aabi �!Babi ; (245)3F ik(B) = 3F ik(A)���Aai�!Bai ; (246)Let us return to the onstraints Hi. By (102)Hi = Qka � 3rkPai � 3riPak� : (247)On the other side, by (243), (246), (170)3F ik(B) = �iBk � �kBi � "abBai Bbk == �i�Ak + 1bPk�� �k �Ak + 1bPi�� "ab�Aai + 1bPai��Abk + 1bPbk� == 3F ik(A)++1b ���iPk � "abAaiPbk � 3�likPl�� ��kPi � "abAakPbi � 3�lkiPl��� 1b2 "abPaiPbk; (248)
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where we have added the equal to zero quantity1b �� 3�likPl � (� 3�likPl )� : (249)Or,3F ik(B) = 3F ik(A) + 1b � 3riPak � 3rkPai�� 1b2 "abPaiPbk == 12"abelaemb 3Rik;lm + 1b � 3riPak � 3rkPai�� 1b2 "abPaiPbk; (250)where we have taken into aount the (243).Hene,�i 3F ik(B) = 12�i"abelaemb 3Rik;lm + 1b�i� 3riPk � 3rkPi�� 1b2�i"abPaiPbk: (251)By (171) �ia = �bQia, so that with the equality (247) we obtain1b�i� 3riPk � 3rkPi� = �Qia � 3riPak � 3rkPai� = �Hk: (252)Further, the tensor 3Rik;lm satis�es the identity"ikl 3Rik;lm = 0; (253)whih is a 3-dimensional analog of the 4-dimensional identity"���R��;Æ = 0: (254)Therefore, taking into aount the equality�ia = �bQia = �beeia; (255)where e = det eai = (det eia)�1, we �nd that�i"abelaemb 3Rik;lm = �beeielaemb "ab 3Rik;lm = �b"ilm 3Rik;lm = 0; (256)beause of 3Rik;lm = 3Rlm;ik.Finally, by (222) and (255) we have� 1b2�i"abPaiPbk = 1bQiPai "abPbk = 1b�bPbk: (257)In virtue of the (252), (256), (257) the equality (251) takes the form�i 3F ik(B) = �Hk + 1bPbk�b; (258)and, hene, Hk = ��i 3F ik(B) + 1bPbk�b: (259)28



Early we have introdued (see (111)) the linear ombination of onstraints Hi + Ai�,whih generates transformations of 3-dimensional oordinates without a displaement ofvierbeins as geometrial objets (in the theory with anonial variables Qia, Pai ). By (218),(219) we an write this quantity in the formHk + Ak� = ��i 3F ik(B) + (Bbk � Abk)�b + Ak� = ��i 3F ik(B) +Bbk�b: (260)We an use, if it is onvenient, instead of the onstraint Hk the onstraintH0k � Hk + Ak� = ��i 3F ik(B) +Bbk�b: (261)Sine the transformation (Qia;Pai ) �! (Ba ;�ia) is anonial the physial sense of theonstraints �a (234) and H0k = Hi+Ai� (261) does not hange. The onstraints �a gen-erate, as earlier, the SO(3) { transformations of 3-dimensional vierbeins without a hangeof oordinates, and the onstraints H0k = Hi+Ai�, �a generates the transformations of3-dimensional oordinates without the hange of vierbeins as geometrial objets.Let us return to the onstraint H0. By (250), (171) and the equality Qia = � 12 eia wehave�ia�kb"ab 3F ik(B) = b2�eidekf"df�12"abelaemb 3Rik;lm + 1b � 3riPk � 3rkPi�� 1b2 "abPaiPbk� == b2�eideldekfemf 3Rik;lm + 2b� 3ri �eidekfPk"df�� � �eidekf � eifekd�PdiPfk : (262)We have taken into aount that"df"ab = ÆdaÆfb � ÆdbÆf; 3rieka = 0; 3ri"df = 0: (263)Further, b2�eideldekfemf 3Rik;lm = b2��il�km 3Rik;lm = b2� 3R; (264)2b� 3ri �eidekfPk"df� = 2bp��i �p�eidekfPk"df� == 2bp��i �eid"dfQkfPk� = 2bp��i �eid�d� ; (265)�� �eidekf � eifekd�PdiPfk = QifQkdPdiPfk � (QidPdi )2 == QkdPfk �QifPdi �QidPfi �+QidQkdPfi Pfk � (QidPdi )2 == QidQkdPfi Pfk � (QidPdi )2 �QkdPfk"df�: (266)Therefore�ia�kb"ab 3F ik(B) = b2� 3R+�QidQkdPfi Pfk � (QidPdi )2��QkdPfk"df�+2bp��i �eid�d� : (267)At the same time, by (103)H0 = 14 � 2{Q 12 ��QkbQlbPkPl � (QkbPbk)2�� Q 122{!� 3R� 2�� : (268)29



Therefore the equality (267) an be written in two ways: the �rst one,�ia�kb"ab 3F ik(B) == b2� 3R+4 Q 122{! H0 + Q 122{!� 3R� 2��!�QkdPfk"df�+2bp��i �eid�d� == 4 Q 122{! H0 + Q 122{!  1 + �2{2 �2 b2! 3R� 2�!!+�QkdPfk"df� + 2bp��i �eid�d� ; (269)the seond one, taking into aount (218), (219):�ia�kb"ab 3F ik(B) == �(2{)b2p�H0 + 1 + �2{2 �2 b2!�QkbQlbPkPl � (QkbPbk)2�++2b2���QkdPfk"df� + 2bp��i �eid�d� == �(2{)b2p�H0+ 1 + �2{2 �2 b2!��kb�lb(Bk � Ak)(Bl � Al )� ��kb (Bbk � Abk)�2�++2b2���QkdPfk"df� + 2bp��i �eid�d� ; (270)where the Ak, Qkd, �, eid are to be expressed in terms of the �ia with the help of the (59),(60), (62), (218), (220). Aordingly, the onstraint H0 an be written in two forms:H0 = 14 � 2{Q 12 ���ia�kb"ab 3F ik(B) +QkdPfk"df� � 2bp��i �eid�d����Q 122{   1 + �2{2 �2 b2! 3R� 2�! (271)andH0 = 1(2{)b2p� ��ia�kb"ab 3F ik(B)++ 1 + �2{2 �2 b2!��kb�lb(Bk � Ak)(Bl � Al )� ��kb (Bbk � Abk)�2�++2b2���QkdPfk"df� + 2bp��i �eid�d�!: (272)The ation in the anonial form looks now like the following:Srep(B;�)(1) = Z d4x ��ia�0Bai �NH0 �N iHi � �a�a� : (273)Substitute here at �rst the H0 in the form (271) and replaeZ d4xN 12(2{)b�i(eid�d) (274)30



by the Z d4x��2{2 beid(�iN)�d� (275)assuming, for the simpliity, that the universe is losed and throwing out the surfae termin the integral2. Let us take, further, by (261)NkHk = NkH0k �NkAk�: (276)As a result we �nd thatSrep(B;�)(1) = Z d4x��ia�oBai���14N 2{Q 12 � �ia�kb"ab 3F ik(B)�Q� 22{�2  1 + �2{2 �2 b2! 3R � 2�!!��NkH0k � ��a + 14N 2{Q 12 QkdPfk"dfa + 2{2 beia�iN �NkAak��a�: (277)Now we introdue new lagrange multipliersN 0 = 14N 2{pQ; (278)�0a = �a + 14N (2{)pQ QkdPfk"dfa + (2{)2 beia�iN �NkAak: (279)Sine N , �a are arbitrary funtions, N , �a are arbitrary too, and they may be used aslagrange multipliers.Now we getSrep(B;�)(1) = Z d4x��ia�0Bai �N 0H00 �NkH0k � �0a�a� ; (280)where H0k, �a are determined by (261), (234) andH00 = �ia�kb"ab 3F ik(B) + b�3�� 2(2{)�2  1 + �(2{)2 �2 b2! 3R� 2�! : (281)We take into aount that� = Q = �b�3� � �b�3 det(�ia): (282)in aordane with (229). It is presumed, that 3R is expressed in terms of �ia by (218),(65). Lagrange multipliers N 0 and �0a may be also expressed in terms of N , Nk, �a, Bi ,�i by (218), (219), (146).Let us represent Srep(B;�)(1) in the other form with the help of expression (272) for H0:From this expression and (217), (276) we �ndSrep(B;�)(1) = Z d4x �ia�0Bai � �� N(2{)b2p����ia�kb"ab 3F ik(B)�2Even if the spae-time is asymptotially at at free dimensional in�nity the surfae term an be herenegleted beause the orresponding expression derease at xixi !1 enough rapidly.31



� 1 + �2{2 �2 b2!���kb (Bbk � Abk)�2 � �kb�lb(Bk � Ak)(Bl � Al )�� 2b2�����NkH0k � ��a � N(2{)b2p�QkdPfk"dfa � 2(2{)b(�iN)eia �NkAak��a!: (283)If we introdue instead of N , �a new lagrange multipliersN 00 = � N(2{)b2p� ; (284)�00a = �a � N(2{)b2p�QkdPfk"dfa � 2(2{)beia�iN �NkAak; (285)the ation (283) will be:Srep(B;�)(1) = Z d4x��ia�0Bai �N 00H000 �NkH0k � �00a�a� ; (286)whereH000 = �ia�kb"ab 3F ik(B)�� 1 + �(2{)2 �2 b2!���kb (Bbk � Abk)�2 � �kb�lb(Bk � Ak)(Bl � Al )�� 2b��: (287)It is supposed here that Abk is expressed in terms of �kb in aordane with (220) and that� = det� ia, 3F ik(B) = �iBk � �kBi � "abBai Bbk; (288)and in aordane with (227), (234), (261)H0k = ��i 3F ik(B) +Bbk�b; (289)�a = �p�� 3ri[B℄� �iap��� = � ��k�ka � �kbBbka� ; (290)where Bbka = "baBk.One may express lagrange multipliers N 00, �00a in terms of N , Nk; �a, Bi , � i with thehelp of (218), (219), (220) and equalities � = Q = �b�3�, eia = Q�1=2Qia.It is possible to use the theory, based on any of the two forms for ation { (280) or(286).The variablesBai ,� ia turn, after the quantization, into the operators with ommutationrelations for �xed x0 value:�Bai (x);�kb (ex)� = iÆki Æab Æ3(x� ~x); �Bai (x); Bbk(ex)� = 0; ��ia(x);�kb (ex)� = 0: (291)Lagrange multipliers are arbitrary funtions and one need seven more subsidiary ondi-tions to �x this arbitrariness. Constraints H0, Hi, �a are too involved to solve themexpliitly. So one has to apply onstraints to the physial state vetors:H000j	 >= 0 (292)32



or H00j	 >= 0; (293)H0ij	 >= 0; (294)�aj	 >= 0: (295)It is easy to get state vetors in Bai -representation whih satisfy the onstraints (295). Infat, the onstraints �a (295) generate tetrad transformations, and the trae of the losedontour integration of onnetion Bai is invariant under suh transformations . Therefore,any funtion of any number of suh traes of di�erent losed paths on the x0 = 0 surfaeis invariant under SO(3) tetrad transformations and satis�es the onstraints (295).It is slightly more ompliated to satisfy onstraints H0i (294). These onstraintsgenerate three-dimensional oordinate transformations, whih do not a�et tetrad systemas geometrial objet. Operators Bai (x) hange not into B0ai (x0), but into B0ai (x). In otherwords, hanging oordinate system arries the integration ontour with itself, so that itis not stable geometrial objet. Trae of this path integral is not invariant under suhtransformations. But it is possible, in prinipe, to onstrut state vetor, whih is invariantunder suh transformation. One need �rstly to produe funtion 	 of some number of pathintegral traes and, then, arry out ontinual integration by all possible transformations ofthree dimensional oordinate system. It appears a state vetor, invariant under onstraintsH0i, �a.If it may be possible to satisfy the onstraint (292) (or (293) in other variant), thequantum gravity problem would be solved ompletely, sine generalized hamiltonian isnot more than linear ombination of the onstraints. However, the onstraint H000 (or H00)is muh more ompliated and one may rely on approximate alulations only. In approx-imate approah to the problem on the hypersurfae x0 = 0 it is usual to introdue lattieand generate losed loops from its edges. It is known, how to get full set of independentstate vetors on this lattie, whih satisfy onstraints (295). Di�erent approximate meth-ods to solve equations (292) (or (293)) are now being developed. This �eld is known as"loop theory of quantum gravity".It is asertain by now, that quantum theory results depend on Barbero-Immirzi param-eter b, though in lassi the di�erent b theories are onneted by anonial transformationsand so are equivalent. It is known also that in quantum ase the onstraint e�(0) = n� re-sults in violation of the loal Lorentz invariane of tetrad frame at very small (near Planklength) distanes. It does not take plae in lassi ase, where results do not depend onsupplementary onditions suh as e�(0) = n�: Here we deal with quantum anomaly. It doesnot lessen the value of the theory in itself, sine quantum anomaly at very short distanesmay not ontradit the observations. Nevertheless, the other possibility was investigatedin PhD thesis by S. Alexandrov [5℄. He determined that it is possible to onstrut theorywithout violation of the loal Lorentz symmetry, but it would be very involved. Therefore,there were no any attempts to develop or to apply this theory.4 Complex Ashtekar formalismWe will not go here into problems of approximate solutions of the onstraint (292) or(293). One an meet it in the artiles by Ashtekar, Thiemann and their olleagues. We33



desribe here only the omplex Ashtekar formalism, whih is of undoubted interest. Itmay be onstruted in the following way.One an ontinue the �elds Bai and � ia to the omplex plane, and setb = �i 1{ : (296)It is possible to selet any sign here. We suppose further that only upper, or only downsigns are used. In aordane with (170), (171), (218), (219) the equalitiesBai = Aai � i{Pai ; �ia = � i{Qia; (297)Qia = �i{�ia; Pai = �i 1{ (Bai � Aai ) (298)take plae. At the same time the expressions (281), (287) are simpli�ed abruptly and takethe form H00 = H000 = �ia�kb"ab 3F ik(B)� 2i{��: (299)The other onstraints remain unhanged. Let us note, that under ondition b = �i={ anequality N 0 = N 00 takes plae in aordane with (278), (284).Taking into aount the form of the quantities 3F ik(B) in (288) we onlude, that allthe onstraints depend polynomially on the anonial variables Bai and �ia. This fatsimpli�es the theory abruptly. However, in order to return to the real domain (whih isphysial) we need to impose reality ondition onto the solutionsBai +Bai � = 2Aai ; (300)where Aai are expressed by way of (220) in �. This ondition may be onsidered as seondlass onstraint in omplex theory. The existene of this ondition is the main problemin present method. The quantity Bai � in (300) is omplex onjugated with Bai in lassitheory and is Hermitian onjugated with Bai in quantum theory.In view of omplexity of the (300), it is urrently preferred to onstrut the loopquantum theory of gravity for a real value of the parameter b than for the omplexparameter b = �i={, in spite of the ompliated onstraint H00 (or H000) in real variant ofthe theory.Ashtekar ame to his formalism through four dimensional omplex selfdual tetradonnetion. Now we turn to this point. Let CAB = �CAB be omplex antisymmetritetrad tensor on the tangent vetor bundle on the spae-time with the symmetry groupSO(1; 3): Then the tensor �CAB (��CAB) is named dual (anti-dual) with respet to CAB,if ��CAB = � i2�AD�BE"DEFGCFG: (301)Tensor aAB is named selfdual (anti-selfdual), ifaAB = �aAB = � i2�AD�BE"DEFGaFG; (302)aAB = ��aAB = i2�AD�BE"DEFGaFG; (303)34



i. e., if aab = �aab = �i"aba(0);a(0) = �a(0) = i2"abaab; (304)aab = ��aab = +i"aba(0);a(0) = ��a(0) = � i2"abaab: (305)Any antisymmetri tetrad tensor CAB may be deompose in selfdual and anti-selfdualparts: CAB = C(+)AB + C(�)AB; (306)C(+)AB = 12 �CAB + �CAB� = 12 �CAB � i2�AD�BE"DERSCRS� ; (307)C(�)AB = 12 �CAB � �CAB� = 12 �CAB + i2�AD�BE"DERSCRS� ; (308)i. e. C(�)ab = 12 �Cab � i"abC(0)� ;C(�)(0) = 12 �C(0) � i2"abCab� ; (309)and C(�)ab = ��C(�)ab = �i"abC(�)(0);C(�)(0) = ��C(�)(0) = � i2"abC(�)ab: (310)Let us mention that the seond equality (310) follows from the �rst one and vie versa.So there exist only three independene onditions of selfduality. If we had omitted the iin (307) there would be six independent ondition and no tensors ful�lling them wouldexist. So, there do not exist real selfdual tensors.Working with tensors as FAB�� , whih are antisymmetri both in oordinate indies andin tetrad indies (e. g. urvature tensor in tetrad representation), one should bear in mindthat along with the oneption of selfduality on the tetrad indies A;B one ould de�neby the orresponding manner also the oneption of selfduality on the oordinate indies��. In gauge theories one deals with tensors, selfdual in Lorentz oordinate indies. Herewe take an interest in tensors (anti)selfdual in tetrad indies and we shall work with these(anti)selfdual tensors only. In partiular, for (anti)selfdual tensor FAB�� we haveFAB�� = � i2�AD�BE"DEFGF FG�� : (311)Let us turn now to the tetrad onnetion A. Sine it is SO(1; 3)-onnetion, one hasAAB� � AA�D�DB = �ABA� : (312)35



The orresponding �eld strength isF��AD(A) = FAB�� (A)�BD = ��AA� D � ��AA�D + AA� EAE� D � AA� EAE� D; (313)or FAB�� (A) = ��AAB� � ��AAB� + AAD� �DEAEB� � AAD� �DEAEB� (314)and FAB�� = �FBA�� . When the frame is hanged, whih hanges the vetors refereed tothe tetrad basis by the rule a0A = !ABaB; (315)where !AB is a Lorentz matrix, suh that!AB�BD!ED = �AE; det(!AB) = 1; (316)then the onnetion hanges in aordane with the relationA0A� B = !ADAD� F (!�1)FB + !AB��(!�1)DB; (317)or, in view of (MT86), (MT87)A0AB� = !AD!BEADE� + !AD�DE��!BE; (318)and the orresponding �eld strength hanges asFAB�� (A0) = !AD!BEFDE�� (A): (319)Though the transformation (318) is not tensorial, we an at every frame �nd (anti)dualquantity with respet to A, if we set��AAB� = � i2�AD�BE"DEFHAFH : (320)Furthermore, ��FAB�� (A) = � i2�AD�BE"DEFHFAB�� : (321)The �FAB�� (A) is a tensor as is the ase with FAB�� (A): So�FAB�� (A0) = !AD!BE�FDE�� (A): (322)But �AAB� transforms by the rule�A0AB� = !AD!BE �ADE� � i2�AD�BE"DEFG!FH�HL��!GL; (323)whih di�ers from (318). Then, if we onstrut FAB�� (�A) from �AAB� just as FAB�� (A) wasonstruted from A, we get FAB�� (�A) 6= �FAB�� (A) and FAB�� (�A) is not a tensor. Let us note,that the �rst term in the right hand side of (323) looks as tensor, sine the �rst term inthe right hand side of (318) is of tensor type and (anti)dual transformation onverts thetensor into the tensor. Let us organize (anti)selfdual quantitiesA(�)AB� = 12 �AAB� � �AAB� � ; (324)36



F (�)AB�� (A) = 12 �FAB�� (A)� �FAB�� (A)� : (325)From here we get AAB� = A(+)AB� + A(�)AB� ; (326)FAB�� = F (+)AB�� + F (�)AB�� ; (327)�A(�)AB� = �A(�)AB� ; (328)�F (�)AB�� (A) = �F (�)AB�� (A): (329)F (�)AB�� (A) are tensors, so under frame transformationF 0(�)AB�� (A) = !AD!BEF (�)DE�� (A); (330)and due to (318), (323)A(�)� 0AB = !AD!BEA(�)DE� +12 �!AD�DE��!AE � i2�AD�BE"DEFG!FH�HL��!GL� :(331)Now we onstrut FAB�� (A(�)) from A(�)AB� in the same way as FAB�� (A) is onstrutedfrom AAB� :FAB�� (A(�)) � ��A(�)AB� � ��A(�)AD� + A(�)AD� �DEA(�)EB� � A(�)AD� �DEA(�)EB� : (332)The following proposition is validF (�)AB�� (A) = FAB�� (A(�)); (333)and, in aordane with (330)FAB�� (A(�)0) = !AD!BEFDE�� (A(�)): (334)It is true in spite of the fat, that �FAB�� 6= FAB�� (�A) and the transformation rule for A(�)AB�(331) di�ers from the transformation rule for AAB� .Let us prove (333) for selfdual tensors (in upper indies). Anti-selfdual ase is similar.We haveFAB�� (A(+)) = ��A(+)AB� + A(+)AD� �DEA(+)ED� � (� ! �) == 12 ���AAB� + ���AAB� �+ 14 �AAD� + �AAD� � �DE �AEB� + �AEB� �� (� ! �) == 12 ���AAB� + 12AAD� �DEAEB� + 12�AAD� �DE�AED� �++12 ����AAB� + 12�AAD� �DEAEB� + 12AAD� �DE�AEB� �� (� ! �): (335)The next equality is valid:�AF"ABDE"FGHL = ��ÆBGÆDHÆEL + ÆBHÆDLÆEG + ÆBLÆDGÆEH�37



�ÆBGÆDLÆEH � ÆBLÆDHÆEG � ÆBHÆDGÆEL�; (336)and if aHL = �aLH , then�AF "ABDE"FGHLaHL = �2 (ÆBGÆDHÆEL + ÆBHÆDLÆEG + ÆBLÆDGÆEH) aHL: (337)Using this fat, we get�AAD� �DE�AEB� � (� ! �) == � i2�AF�DG"FGHLAHL� �DE �� i2� �EM�BN"MNPQAPQ� � (� ! �) == �14�GM"FGHLAHL� "MNPQAPQ� �AF�BN = 14�GM"GFHL"MNPQAHL� APQ� �AF�BN == �12 (�FN�HP�LQ + �FP�HQ�LN + �FQ�HN�LP )AHL� APQ� �AF�BN == �12 ��ABAHL� APQ� �HP�LQ + AHB� �HQAAQ� + ABL� �LPAPA� �� (� ! �) == �12 ��AHB� �HQAAQ� � ABL� �LPAPA� �� (� ! �) == 12 �AAQ� �QHAHB� + AAP� �PLALB� � = AAD� �DEAEB� : (338)It means that��AAB� + 12AAD� �DEAEB� + 12�AAD� �DE�AED� � (� ! �) == ��AAB� + AAD� �DEAEB� � (� ! �) = FAB�� (A); (339)so that in aordane with (335)FAB�� (A(+)) = 12FAB�� (A)++�12 ����AAB� + 12�AAD� �DEAEB� + 12AAD� �DE�AEB� �� (� ! �)� : (340)Further, the equality�12�AD�BE"DEFG�FH�GL"HLMN = �ÆAMÆBN � ÆANÆBM� (341)is idential. If aAB = �aBA, then�14�AD�BE"DEFG�FH�GL"HLMNaMN = aAB: (342)The expression �AAD� �DEAEB� + AAD� �DE�AEB� � (� ! �) (343)is antisymmetri in A, B due to the (�$ �): So, we have, taking (337) into aount,�AAD� �DEAEB� + AAD� �DE�AEB� � (� ! �) == �14�AF�BG"FGHL�HM�LN"MNQP�� i2�QR�DS"RSXZAXZ� �DEAEP� +38



+AQD� �DE �� i2� �ER�PS"RSXZAXZ� �� (� ! �) == i8�AF�BG"FGHL�HM�LN��QR"QMNP"RSXZAXZ� ASP� ++�PS"PMNQ"SRXZAQR� AXZ� �� (� ! �) == � i8�AF�BG"FGHL�HM�LN�2 (�MS�NX�PZ + �MX�NZ�PS + �MZ�PX�NS)AXZ� ASP� ++2 (�MR�NX�QZ + �MX�NZ�QR + �MZ�NR�QX)AQR� AXZ� � (� ! �)� == � i4�AF�BG"FGHL��AHP� �PZAZL� + AHX� �XPAPL� ++AHQ� �QZAZL� � AHX� �XQAQL� � (� ! �)� == � i2�AF�BG"FGHL �AHX� �XPAPL� � AHP� �PZAZL� � (� ! �)� == �i�AF�BG"FGHLAHX� �XPAPL� � (� ! �); (344)and, further, by (340)12 ��AAB� + 12�AAD� �DEAEB� + 12AAD� �DE�AEB� �� (� ! �) == 12 �� i2�AD�BE"DEFG � ��AFG� + AFH� �HLALG� � (� ! �)�� == 12 �� i2�AD�BE"DEFGF FG�� (A)� = 12�FAB�� (A) (345)and FAB�� (A(+)) = 12 �FAB�� (A) + �FAB�� � = F (+)AB(A): (346)The proposition (333) is proved.So, one may get the selfdual (anti-selfdual) part of the �eld strength from the selfdual(anti-selfdual) part of the onnetion dy the same way as usual �eld strength from theusual onnetion.The next proposition is as well true (it is like one whih was proved just now, but notthe same). Let a(�)AB� be any (anti)selfdual quantity with arbitrary transformation ruleunder the frame transformations and letFAB�� (a(�)) = ��a(�)AB� � ��a(�)AB� + a(�)AD� �DEa(�)EB � a(�)AD� �DEa(�)EB� : (347)Now we state that FAB�� (a(�)) is (anti)selfdual, i. e. if �a(�)AB� = �aAB� , then �FAB�� (a(�)) =�F (a(�)).Note: if a(�)AB� does not transforms as (anti)selfdual part of the onnetion A(�)AB� ,then FAB�� (a(�)) is not, in general, a tensor, but it is (anti)selfdual.Corollary: if  = onst,  6= 1, then FAB�� (A(�)) is (anti)selfdual, though it is not atensor.We prove the above statement for selfdual ase (anti-selfdual ase is similar). Let ustake into aount, that a(+)AB� = � i2�AD�BE"DEFGa(+)FG: (348)39



We have� i2�AD�BE"DBFGF FG�� (a(+)) == �� �� i2�AD�BE"DEFGa(+)FG� �� �� �� i2�AD�BE"DEFGa(+)FG� ��� i2�AD�BE"DEFG �a(+)FH� �HMa(+)MG� � a(+)FH� �HMa(+)MG� � == ��a(+)AB� � ��a(+)AB� �� i2�AD�BE"DEFG�� i2�FN�HP"NPRSa(+)RS� �HMa(+)MG� � (� ! �)� == ��a(+)AB� ���a(+)AB� � 14 ��AD�BE�EN"DEFG"NMRSa(+)RS� a(+)MG� � (� ! �)� : (349)Further�EN"FDES"NMRSa(+)RS� == � (�DM�ER�GS + �DR�ES�GM + �DS�EM�GR � (R ! S)) a(+)RS� == �2 (�DM�ER�GS + �DR�ES�GM + �DS�EM�GR) a(+)RS� : (350)Then,� i2�AD�BE"DEFGF FG�� (a(+)) = ��a(+)AB� � ��a(+)AB� ++12�AD�BE �(�DM�ER�GS + �DR�ES�GM + �DS�EM�GR) a(+)RS� a(+)MG� � (� ! �)� == ��a(+)AB� � ��a(+)AB� ++12 �a(+)BS� a(+)AG� �SG + a(+)AB� a(+)MG� �MG + a(+)RA� a(+)BG� �RG � (� ! �)� == ��a(+)AB� � ��a(+)AB� + a(+)AD� �DEa(+)EB� � a(+)AD� �DEa(+)EB� = FAB�� (a(+)); (351)so, FAB�� (a(+)) = � i2�AB�BE"DEFGF FG�� (a(+)): (352)It may be proved in a similar manner thatFAB�� (a(�)) = i2�AB�BE"DEFGF FG�� (a(�)): (353)So, if a(�)AB� = � i2�AD�BE"DEFGa(�)FG� ; (354)then FAB�� (a(�)) = � i2�AD�BE"DEFGF (�)FG�� (a(�)): (355)It means that if a(�)AB� is (anti)selfdual, then FAB�� (a(�)) is also (anti)selfdual.40



Let us onsider now expression for the three-dimensional part of the (anti)selfdual �eldstrength with the help of (333), (310) (later we adopt a; b; ::: = 1; 2; 3):F (�)ab�� (A) = F ab��(A(�)) = ��A(�)ab� + A(�)aD� �DEA(�)Eb� � (� ! �) == ��A(�)ab + A(�)a� A(�)b� + A(�)a(0)� �(0)(0)A(�)(0)b� � (� ! �): (356)Same time with the help of (310)A(�)a(0)� �(0)(0)A(�)(0)b� � (� ! �) = �A(�)a(0)� A(�)(0)b� � (� ! �) == A(�)(0)a� A(�)(0)b� � (� ! �) = �� i2"adA(�)d� ��� i2"bfgA(�)fg� �� (� ! �) == �14"adA(�)d� "bfgA(�)fg� : (357)Sine A(�)d� = �A(�)d� , then"ad"bfgA(�)d� =2 �ÆabÆfÆdg + ÆafÆgÆdb + ÆagÆbÆdf�A(�)d� == 2 �ÆabA(�)fg� + ÆafA(�)gb� + ÆagA(�)bf� � (358)andA(�)(0)a� A(�)(0)b� � (� ! �) == �12 �ÆabA(�)fg� + ÆafA(�)gb� + ÆagA(�)bf� �A(�)fg� � (� ! �) == �12 �ÆabA(�)fg� A(�)fg� + A(�)gb� A(�)ag� + A(�)bf� A(�)fa� � (� ! �)� == �A(�)gb� A(�)ag� � (� ! �) = A(�)ag� A(�)gb� � (� ! �): (359)In view of (356)F (�)ab�� (A) = ��A(�)ab� � ��A(�)ab� + 2(A(�)a� A(�)b� � A(�)a� A(�)b� ): (360)So,2F (�)ab�� (A) == ��(2A(�)ab� )���(2A(�)ab� )+(2A(�)a� )(2A(�)d� )�(2A(�)a� )(2A(�)b� ) � 3F ab��(2A(�)df� ); (361)where we denote by 3F ab��(2A(�)df� ) the quantity, whih is onstruted from 2A(�)dfi in thesame way as the three-dimensional (in frame indies) �eld strength is onstruted fromSO(3) onnetion (2A(�)df� ) on the vetor bundle above the three-dimensional base withSO(3) struture. It is lear, that in arbitrary SO(1; 3) frame system we have no framesubsystem, whih would be SO(3) frame system above the three-dimensional base. Butthe quantity 2F (�)ab�� (A) = 2F ab��(A(�)) = 3F ab��(2A(�)df� ) (362)is always so onstruted as if we deal with suh SO(3) frame subsystem with onnetion2A(�)df� , where index � runs only three values.41



Let us note that in some reviews on the loop gravity the onnetion between F (�)ab�� (A),F ab��(A(�)) and 3F ab��(2A(�)df� ) is displayed insuÆiently thoroughly.Let us now turn to the ase, when SO(1; 3) tetrad system is subjet to supplementaryondition e�(0)(x) = n�(x); (363)where n�(x) is a unit normal to the x0 = onst hypersurfae, whih inlude point x.Earlier during the onstrution of the gravitational theory in tetrad formalism we all thetime supposed, that the ondition (363) takes plae. Then after (45) e(0)i = 0. Thisondition must hold under frame transformation, so0 = e0(0)i = !(0)AeAi = !(0)aeai : (364)Sine det eai 6= 0, then !(0)a = 0: (365)It follows from !AB�BD!ED = �AE: (366)and (365) that !(0)B�BD!aD = !(0)(0)�(0)(0)!a(0) = 0; (367)from where !a(0) = 0: (368)Furthermore, in aordane with (365), (366), (368)!(0)(0)�(0)(0)!(0)(0) = �(0)(0); (369)from where (!(0)(0))2 = 1. We assume, that the diretion of e�0 does not depend on time,then !(0)(0) = 1.So, under aepted restritions on frame system!(0)(0) = 1; !(0)a = 0; !a(0) = 0; (370)and the ondition (366) turns into !ab!b = Æa: (371)Now three-dimensional part eia of tetrads make up tetrad system on vetor SO(3) bundleabove the surfae x0 = onst, and matries !ab realize SO(3) rotation of this system.The transformation rule for the onnetionA0AB� = !AD!BEADE� + !AD�DE��!BE (372)takes the form A0ab� = !a!bdAd� + !a��!b; A0(0)� = !DA(0)d: (373)42



As it was shown above, three-dimensional part of the onnetion Aabi oinides with three-dimensional onnetion 3Aabi , whih was built as usual on tetrads eai , formed in three-dimensional system on the surfae x0 = onst. In aordane with (309)A(�)ab� = 12 �Aab� � i"abA(0)� � ; (374)A(�)(0)� = 12 �A(0)� � i2"abAab� � : (375)We �nd from (373) that transformation rule for A(�)ab� takes the formA(�)0ab� = 12 �!a!bdAd� + !a��!b � i"ab!dA(0)d� ; (376)but !a!bd!fg"dg = "abf ; (377)from where in view of (371) "ab!f = !a!bd!"df : (378)So "ab!dA(0)d = !a!bd"dfA(0)f (379)andA(�)ab� = 12 �!a!bd �Ad� � i"dfA(0)f� �+ !a��!b� == 12 �2!a!bdAd� + !a��!b� = !a!bdA(�)d� + 12!a��!b: (380)That why 2A(�)ab� = !a!bd �2A(�)d� �+ !a��!b (381)and, in partiular 2A(�)abi = !a!bd �2A(�)di � + !a�i!b: (382)It means that the quantity (2A(�)abi ) in view of (382) and (373) transforms in the sameway as Aabi = 3Aabi . So the orresponding �eld strength3F abik �2A(�)dl � = �i(2A(�)abk )� �k(2A(�)abi ) + 2A(�)ai 2A(�)bk � 2A(�)ak 2A(�)bi (383)is a three-dimensional tensor like the initial three-dimensional �eld strength3F abik(A) = �iAabk � �kAabi + Aai Abk � Aak Abi : (384)43



In view of (361) 3F abik(2A(�)df ) = 2F (�)abik (A); (385)where F (�)abik is the three-dimensional part of the (anti)selfdual �eld strengthF (�)AB�� (A) = 12 �FAB�� (A)� �FAB�� (A)� ; (386)onstruted of the initial onnetion AAB� . Unlike the part 3F abik(2A(�)df ) of the quantity(362), whih was introdued in arbitrary SO(1; 3) frame and was only formally a three-dimensional �eld strength, onstruted of (2A(�)df ), we have here 3F abik(2A(�)df ), whihis really three-dimensional �eld strength on x0 = onst surfae and is onstruted ofnew three-dimensional onnetion 2A(�)dfi , whih transforms as initial three-dimensionalonnetion Aabi = 3Aabi .So we get the following result. If one onstruts on the surfae x0 = onst in a framesystem with e�(0) = n� a doubled three-dimensional part 2A(�)abi of the (anti)selfdualonnetion A(�)AB� = 12(AAB� � �AAB� ), then this quantity 2A(�)abi will be, in aordanewith its transformation rule, a new three-dimensional onnetion, and the new three-dimensional �eld strength 3F abik(2A(�)df ) oinides with 2F (�)abik (A), where F (�)abik (A) is theset of all three-dimensional omponents of (anti)selfdual part of the �eld strength FAB�� (A),based on initial onnetion AAB� . Let us note that the three-dimensional strength3F abik(2A(�)df ) = 2F (�)abik (A) = 2F abik (A(�)) (387)does not oinide with the three-dimensional part of the four-dimensional quantityFAB�� (2A(�)), whih is not a Lorentz tensor in A;B indies, in spite of its selfduality.One need to avoid onfusion between three-dimensional part of FAB�� (2A(�)) and three-dimensional tensor 3F abik(2A(�)df ).One may represent the three-dimensional tensor 3F abik(2A(�)df ) and the new three-dimensional onnetion 2A(�)dfi as3F abik(2A(�)df ) = "ab 3F ik(2A(�)df ); (388)2A(�)abi = "ab2A(�)i ; (389)where in aordane with (374)2A(�)i = 12"ab2A(�)abi = "ab12 �Aabi � i"abA(0)i � = Ai � iA(0): (390)Here we put as previously Ai = 12"abAabi : (391)So 2A(�)i = Ai � iA(0)i ; (392)44



2A(�)abi = "ab2A(�)i = "ab �Ai � iA(0)i � : (393)Let us ompare this result with previously displayed anonial theory, in whih Biand �ia are generalized oordinates and momenta. In view of (22)A(0)i = A(0)i  = e(0)� ��i�e� � (�ie(0)� )e� : (394)In speial tetrad system (37), (45), (48)e0a = 0; e(0)i = 0; e0(0) = 1N ; e(0)0 = N (395)and A(0)i = e(0)0 �0ikek � (�ie(0)k )ek = N�0ikek : (396)In view of (MT108) N�0ik = �Kik, soA(0)i = �Kikek : (397)In view of (MT348), (MT350) Kik = �12Jik;lmP lm; (398)where P lm are generalized ADM momenta. In view of (MT357)�ik = � 1(2{)2p� Jik;lmP lm; (399)where �ik are generalized FP momenta. By (398), (399)�ik = 1(2{)p�Kik: (400)In view of (75) and (400)Pai = 2�ikQka = 2(2{)p�KikQka = 1{Kikeka; (401)Kikeka = {Pai : (402)In view of (392), (397) and (402)2A(�)i = Ai � i{Pi : (403)If we ompare (403) with the �rst equality (297) we see that they oinide, if we hangeup and down indies in (297) and setBi = 2A(�)i : (404)It means that if b = �i={, the dynamial variables Bi oinide with double three-dimensional part of (anti)selfdual omponent A(�)AB� = 12 �AAB� + �AAB� � of the onnetionAAB� (upper sign in (403) for antiselfdual and down sign for selfdual omponents). Just45



that irumstane results in abrupt simpli�ation of the onstraint H0 under suh valuesof b. It is lear that it is possible only in tetrad system with e�(0) = n�.Ashtekar got his onstrution beginning from selfdual tetrad onnetion and then hedisovered essential simpli�ation of H0 in this ase. It beame lear later, that equalities(158), (159) take plae, and we lay this in the basis of our onsideration. As we see, ifb = � i{ and Bai = 2A(�)ai , the relation3F abik(B) = 3F abik(2A(�)d) = 2F (�)abik (A) (405)takes plae, where F (�)abik (A) is the three-dimensional part of the tensorF (�)AB�� (A) = 12 �FAB�� � �FAB�� � ; (406)and 3F abik(B) is spei�ed by (245).As we noted before, omplex tetrad (anti)selfdual formalism is in use more rarely, thanreal non(anti)selfdual theory with more involved onstraint H00 (or H000) beause of veryompliated return from omplex to real region.Hereon we omplete the desription of the di�erent forms of anonial tetrad formalismin gravitation theory.Referenes[1℄ A. Ashtekar, M. Bojowald, J. Lewandowski. "Mathematial struture of loop quantumosmology", Adv. Theor. Math. Phys. V. 7, p. 233-268, 2003, arXiv:gr-q/0304074v4.[2℄ T. Thiemann. "Introdution to Modern Canonial Quantum General Relativity",arXiv:gr-q/0110034v1.[3℄ T. Thiemann. "Letures on Loop Quantum Gravity", Let. Notes Phys. V. 631, p. 41-135, 2003, arXiv:gr-q/0210094v1.[4℄ T. Thiemann. "The Phoenix Projet: Master Constraint Programme for Loop Quan-tum Gravity", Class. Quant. Grav. V. 23, p. 2211-2248, 2006, arXiv:gr-q/0305080v1.[5℄ S. Alexandrov, E.R. Livine. "SU(2) Loop Quantum Gravity seen from Covariant The-ory", Phys. Rev. D, V. 67, p. 044009, 2003, arXiv:gr-q/0209105v3.
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