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1 Introdu
tionTetrad formalism (
alled also "frame formalism") is widely adopted for elaboration of
onsistent quantum theory of gravitation. Orthonormal tetrad �elds are used instead ofmetri
 tensor in this formalism. Canoni
al approa
h to quantization is of greatest utilityhere.In this pedagogi
al notes we set out the 
anoni
al method for gravitational theory intetrad formalism. We introdu
e, �rstly, the tetrad �elds formalism in usual form and thenpro
eed, by means of 
anoni
al transformation, to new variables, whi
h are appli
able inthe so-
alled "loop theory of gravity", whi
h is 
urrently being developed.The present notes may be regard as the sequel to "Quantization of gravitation I.Metri
 tensor approa
h" by the same authors. Cross referen
es are denoted by letters"MT" (e. g. referen
e (MT10) means formula (10) of the above named notes).2 The 
anoni
al tetrad formalismFurther we use the following notation:�; �; ::: = 0; 1; 2; 3; A; B; ::: = 0; 1; 2; 3; i; k; ::: = 1; 2; 3; a; b; ::: = 1; 2; 3; (1)A;B; :::; a; b; ::: are the tetrad indi
es; �; �; :::; i; k; ::: are 
oordinate indi
es; we take inbra
kets a 
on
rete numeri
al value of the tetrad index (e.g. (0)), and do not do this forthat of a 
oordinate index. In the framework of the tetrad formalism one introdu
es atea
h spa
e-time point x� four mutually orthogonal1 normalized ve
tors e�A(x), forming alo
al basis in the spa
e tangent to the spa
e-time at that point. The index A numbersve
tors, and the index � numbers their 
omponents in usual 
oordinate representation.The 
onditions of the orthonormalizability have the form:e�A(x)g��(x)e�B(x) = �AB; (2)where the �AB is Lorentz metri
 tensor;�AB = diag(�1; 1; 1; 1): (3)It is assumed that the ve
tors e�A(x) are linearly independent at ea
h point (x), i. e. thatdet (e�A(x)) 6= 0: (4)Therefore it is possible to introdu
e the quantities e�A(x), takingeA� (x)e�A(x) = Æ��; (5)and hen
e, eA� (x)e�B(x) = ÆAB: (6)A

ording to (2), (5), g��(x) = eA� (x)�ABeB� (x): (7)1We use here and in the following the term "orthogonal" in the sense of pseudoriemannian fourdimen-sional metri
. 2



The set of the four ve
tors introdu
ed at ea
h point is 
alled pseudo-orthogonal tetrad (orvierbein), and the quantities e�A and eA� are 
alled frame parameters or tetrads. Apply-ing the tetrad formalism, one 
onsiders frame parameters eA� (x) as dynami
al variables,des
ribing the gravitational �eld, while the metri
 g��(x) is to be a fun
tion of thosevariables (a

ording to (7)).To de�ne the theory the expression (7) for the g�� is substituted into the a
tion ofthe gravitational �eld. Varying the obtained a
tion w. r. t. the eA� (x), one gets the �eldequations, equivalent to Einstein equations. We get the theory, invariant under two groupsof lo
al transformations: the group of 
oordinate transformations, at whi
h the ve
tors,referred to 
oordinate basis, transform in usual waya0�(x0) = �x0��x� a�(x); a0�(x0) = a�(x) �x��x0� ; (8)while the frame parameters transform under the rulee0�A (x0) = �x0��x� e�A(x); e0A� (x0) = eA� (x) �x��x0� ; (9)and the group of lo
al Lorentz transformations, at whi
h the ve
tors, referred to the tetradbasis, 
hange under the formulasa0A(x) = !AB(x)aB(x); a0A(x) = aB(x)!�1BA(x) (10)and the frame parameters transform in a

ord with the equalitiese0A� (x) = !AB(x)eB� (x); (11)e0�A (x) = e�B(x)!�1BA(x)aB(x): (12)Here the !AB(x) is a matrix of Lorentz transformation, i. e. su
h a matrix that�AB!AD(x)!BE(x) = �DE: (13)That's why in a

ord with the (7), the metri
 g�� does not 
hange under Lorentz trans-formations (11), (12).Using the parameters eA� , e�A , it is possible to transform the ve
tors, referred to the
oordinates basis, into the ve
tors, referred to tetrad basis:aA = eA�a�; aA = e�Aa�; a� = e�AaA; aA = eA�aA: (14)Ve
tors, 
onne
ted by su
h relations, are 
onsidered as di�erent representations of thesame ve
tor.It is also possible to de�ne tensors with the indi
es, referred to 
oordinates or tetradbasis. Su
h a tensor TA:::�:::B:::�::: transforms w. r. t. every index like the 
orresponding ve
tor.With the help of the parameters eA� , e�A it is possible to 
hange the indi
es of tensors (likeof the ve
tors: A to � and � to A).Analogously to 
ovariant derivatives, referred to 
oordinate basis,r�a� = ��a� + ����a�; (15)r�a� = ��a� � a�����; (16)3



one 
an introdu
e the 
ovariant derivatives of the ve
tors, referred to the tetrad basis:r�aA = ��aA + A�ABaB; r�aA = ��aA � aBA�BA: (17)A

ordingly the 
ovariant derivative of the tensor is de�ned by the ruler�TA:::�:::B:::�::: = ��TA:::�:::B:::�::: + A�ADTD:::�:::B:::�::: + : : :++���ÆTA:::Æ:::B:::�::: � : : :� TA:::�:::D:::�:::A�DB � : : :� TA:::�:::B:::
:::�
�� � : : : : (18)The 
onne
tion A�AB is 
hosen to be determined by the following relation:r� �eA� a�� = eA�r�a�; (19)therefore r�eA� = 0; (20)i. e. ��eA� + A�ABeB� � eA����� = 0; (21)hen
e, A�AB = eA�����e�B � ���eA� � e�B = eA�����e�B + eA� ��e�B (22)and ���� = e�AA�ABeB� + e�A��eA� : (23)From the usual expression for the �������� = �12g�'(��g'� + ��g'� � �'g��) (24)and the equalities (7), (22), (23) it is possible to derive the relationA�;AB � �ADA�DB = ��ADSD��e�B + �BDSD��e�A � eE� �EDe�ASD��e�B; (25)where SD�� � 12 ���eD� � ��eD� � : (26)The transformation law of the A�AB under the frame transformations is found fromthe requirement r0�a0A � r0�(!ABaB) = !ABr�aB (27)and has the form A0�AB = !ADA�DE(!�1)EB + !AD��(!�1)DB: (28)As follows from (25) A�;AB = �A�;BA; (29)4



in virtue of that the A�;AB 
an be de
omposed in generators of Lorentz group:AA�B(x) = Aa�(x)TaAB; (30)where a = 1; 2; :::; 6, and the TaAB do not depend on the x�.The 
omplete group of the symmetry has 10 lo
al parameters (the 4 fun
tions of the
oordinate transformation and the 6 parameters of Lorentz transformation). Thereforeit is ne
essary to introdu
e 10 extra 
onditions, �xing this arbitrariness. Of 
ourse, itis possible to remove at �rst only a part of the arbitrariness. We will use this in the
onstru
tion of the 
anoni
al formalism for that theory. We restri
t partly the 
hoi
e oftetrads, 
onne
ting the tetrads with the 
oordinate system by the 
onditione�(0) = n�; (31)where the n� is a normal to the surfa
e x0 = 
onst at the given point. Be
ause ni = 0 itfollows from (31) thate0an0 = e�an� = e�ag��n� = e�ag��e�(0) = �a(0) = 0: (32)Therefore e0a = 0: (33)In �xed 
oordinate system one has a freedom to perform lo
al O(3) { transformations oftetrads. Under the 
hange of 
oordinates the tetrads also 
hange so that the 
onditions(31), (33) always hold. At the given 
hange of 
oordinates the 
hange of the tetrads isde�ned up to O(3) { transformations. The remaining group of all transformations is asemi-dire
t produ
t of 
oordinate group onto O(3) { tetrad group. Sin
e the 
onditions(31), (33) do not restri
t the metri
 g�� , these 
onditions do not violate the equivalen
eof 
lassi
al theory in terms of frame parameters and the theory in terms of metri
 tensor.A

ording to (MT86), (MT87)Ni = ��iknkn0 ; N = 1n0 ; (34)hen
e, (3-dimensional 
oordinate indi
es are lifted up and pull down with the help of �ikand �ik) Nk = �nkn0 ; n0 = 1N ; nk = �n0Nk; (35)n0 = 1N ; nk = �NkN : (36)Thus, in a

ord with the (31), (33), (36)e0(0) = 1N ; e0a = 0; ei(0) = �N iN ; (37)eia are not expressed through the N and N i. The quantities eA� are de�ned by the 
onditione�AeA� = Æ�� (38)5



or e0(0)e(0)0 + e0aea0 = 1; (39)e0(0)e(0)i + e0aeai = 0; (40)ei(0)e(0)0 + eiaea0 = 0; (41)ei(0)e(0)k + eiaeak = Æik: (42)A

ording the (37) e0a = 0. Therefore eq-ns (39) and (40) take the forme0(0)e(0)0 = 1; (43)e0(0)e(0)i = 0: (44)In a

ord with the (37) e0(0) = 1N . So, one gets from (43), (44)e(0)0 = N; e(0)i = 0: (45)Consequently (42) takes the form eiaeak = Æik (46)and the (41) be
ams ei(0)N + eiaea0 = 0: (47)A

ording to the (37) ei(0) = �N iN . Therefore, the (47) takes the formeiaea0 = N i (48)and owing to (46) ea0 = eaiN i: (49)The 
onditions (46) and (6), i. e. e�AeA� = Æ�� (50)are ful�lled simultaneously. Denote e � det(eai ): (51)We have g�� = eA� �ABeB� = �e(0)� e(0)� + ea�ea�: (52)A

ording to the (45) e(0)i = 0. So, it follows from the (52) that�ik = gik = eai eak: (53)6



Hen
e, a

ording to (37),gik = �ei(0)ek(0) + eiaeka = eiaeka � N iNkN2 : (54)In agreement with the (MT100) and (54)�ik = gik + N iNkN2 = eiaeka: (55)Eq-ns (53), (55) are in a

ord with the (46). The quantities g00, g0i, g00, g0i are expressedin terms of N;N i; �ik by formulas (MT100)-(MT102).Thus, all 
omponents of the 4-dimensional metri
 are expressed in terms of eai (or eia)and N , N i, while no restri
tions on the 
omponents of the metri
 arise. Owing to (53),(51) � � det(�ik) = e2; e =p�: (56)Let us introdu
e Qia =p�eia = eeia (57)and de�ne Qai by the equality QaiQka = Æki : (58)Denote Q � det(Qia): (59)Then, owing to (57) Q = e3e�1 = e2 = �; e =pQ: (60)A

ording to (57), (58), (60), (46)Qai = e�1eai = 1p� eai : (61)Conversely, from (57), (61) eia = Q� 12Qia; (62)eai = Q 12Qai : (63)In a

ord with the (53), (55), (62), (63), (60)�ik = QQaiQak; (64)�ik = Q�1QiaQka = ��1QiaQka: (65)In agreement with the (MT355), (65) the Faddeev-Popov (FP) variables qik are expressedsimply through the Qia: qik = ��ik = QiaQka: (66)7



For the further appli
ations we 
hoose as initial variables in the tetrad formalism thequantities: Qia, N , N i. Indi
es a; b; ::: are lifted up and sinking down with the help ofthe tensors �ab = Æab ,�ab = Æab. Therefore it is nonessential where one writes the frameindi
es a; b; : : :, up or down. Further we do not pay attention to where these indi
es arepla
ed, and write Qai � Qia; Qia � Qia: (67)However, this does not 
on
ern the indi
es i; k; :::, whi
h are lowered and lifted with the�ik, �ik.Evidently, eai �ik = eai eibekb = Æab ekb = eka � eka: (68)But one must have in mind that owing to (68), (57), (61)e2e�1eai �ik = eeka; (69)i. e. e2Qai �ik = Qka; (70)so that Qka 6= �kiQai ; (71)and by (60) Qka = e2�kiQai = Q�kiQai : (72)The �rst-order Lagrangian in tetrad formalism 
an be obtained in the simplest way fromthe 1st-order Lagrangian in the FP variables (MT372)L(1) = �ik�0qik + (terms without �0(: : :)) : (73)By (73) and (66)L(1) = �ik�0(QiaQka) + (terms without �0(: : :)) == 2�ikQka�0Qia + (terms without �0(: : :)) : (74)We �nd from this the momenta Pai , 
onjugated with the Qia:Pai = �L(1)�(�0Qia) = 2�ikQka: (75)Owing to that �ik = 12QakPai : (76)Substituting the expressions (76) and qik = QiaQka into the L(1) from (MT372), we obtainthe 1st-order Lagrangian of tetrad formalism. However, it is ne
essary to take into a

ountthat from the (75) three new 
onstraints arise. Sin
e �ik = �ki, we have by (76)QakPai �QaiPak = 0: (77)8



These relations are equivalent to the equalitiesQkbQi
 (QakPai �QaiPak) = 0; (78)or Qi
Pbi �QibP
i = 0; (79)i. e. �a � "ab
QibP
i = 0: (80)Let us show that the 
onstraints �a are the generators of the O(3)-rotations of tetradsaround the �xed dire
tions e�(0) (in a sense of Poisson bra
kets). Here and later we adoptnotations (if not whatever spe
i�ed) x0 = ~x0 = 0; x = (0; x1; x2; x3); ~x = (0; ~x1; ~x2; ~x3);Æ3(x � ~x) = Æ(x1 � ~x1)Æ(x2 � ~x2)Æ(x3 � ~x3) as well as Qia(x) � Qia; Qia(~x) � Qs ia andsimilarly for other fun
tions. Let �a(x) � �a(x1; x2; x3) is an in�nitesimal fun
tion. Then,at x0 = 
onst�Z d3x�a(x)�a(x); Qld(ex)� = Z d3x�a"ab
Qkb�P
k; Qs ld� == Z d3x�a"ab
Qkb(�Æ
dÆlkÆ3(x� ex)) = ��sa"abdQs lb = "dbaQs lb�sa: (81)Here we have taken into a

ount thatnQia;Psbko = ÆbaÆikÆ3(x� ex); (82)�Qia; Qskb� = nPai ;Psbko = 0: (83)Analogously,�Z d3x �a�a;Psdl� = Z d3x �a"ab
 nQkb;PsdloP
k == Z d3x �a"ab
ÆbdÆkl Æ3(x� ex)P
k = "ad
�saPs
l = "dbaPsbl �sa: (84)The equalities (81) and (84) mean that the �a are generators of the O(3) { transforma-tions of tetrads. Therefore the �a 
ommute (in a sense of Poisson bra
kets) with all thequantities, invariant w. r. t. su
h transformations and 
omposed only from Qia and Pai .In parti
ular, if the 
onstraints H0 and Hi are expressed in terms of Qia and Pai , we haven�a;Hs 0o = 0; (85)n�a;Hs io = 0: (86)Sin
e, the �a as well as Qia is a frame O(3)-ve
tor, we get, analogously to (81)�Z d3x �a�a;�sb� = "b
a�s
�sa (87)9



or Z d3x �a �n�a;�sbo� "b
a�
Æ(x� ex)� = 0: (88)Be
ause the �a(x) is an arbitrary fun
tion we haven�a;�sbo = "ab
�
Æ(x� ex): (89)Thus, the 
ommutators of the �a with all other 
onstrains are again 
onstrains, andtherefor the �a are �rst 
lass 
onstrains. At last, by (66), (76), (83), (82) we get after theqik and �lm being expressed through the Qia, Pai :�qik; qslm� = �QiaQka; Qs lbQsmb � = 0; (90)n�ik; �slmo = 14 �QakPai ; Qs bmPsbl� = 14 �Qak; Qs bmPbl�Pai + 14Qak�Pai ; Qs bmPsbl� == 14Qbm nQak;PsbloPai + 14Qak�Pai ; Qs bm�Psbl == 14Qs bm(�QarQ
k nQr
;Psblo)Pai + 14Qak(��Pai ; Qs r
�Qs brQs 
m)Psbl == �14Qs bm(QarQ
kÆrl Æb
Æ3(x� ex))Pai � 14Qak(�Æri Æa
 Æ3(x� ex)Qs brQ
m)Psbl == �14QbmQalQbkÆ3(x�ex)Pai+14QakQbiQamÆ3(x�ex)Pbl = �14QbmQbk(Qal Pai�QaiPal )Æ3(x�ex) == 14QbmQbkQdiQ
l (Qn
Pdn �QndP
n)Æ3(x� ex) == 14QbmQbkQdiQ
l "
da"aefQnePfnÆ3(x� ex) = 14QbmQbkQdiQ
l "
da�aÆ3(x� ex); (91)i. e. f�ik; �lmg = 14QbmQbkQdiQ
l "
da�aÆ3(x� ex): (92)Further,nqik; �slmo = 12 �QiaQka; Qs bmPsbl� = 12Qbm nQiaQka;Psblo == 12Qs bm nQia;PsbloQka+ 12Qs bmQia nQka;Psblo = 12Qs bmÆilÆbaÆ3(x�ex)Qka+ 12Qs bmQiaÆkl Æab Æ3(x�ex) == 12QbmQkb ÆilÆ3(x� ex) + 12QbmQibÆkl Æ3(x� ex) = 12(ÆkmÆil + ÆimÆkl )Æ3(x� ex); (93)i. e. nqik; �slmo = ÆiklmÆ3(x� ex): (94)Thus, expressing qik and �lm through the Qia and Pbl by (66), (76), we �nd the relations(90), (92), (94). If we substitute now the expressions for the qik and �lm in terms of Qia10



and Pbl into the 
onstraints H0 and Hi, then, after 
ommutation of these 
onstraints, thesame expressions as in the FP-formalism arise, up to the terms, proportional to the �a,be
ause of the 
hange of the 
ommutator (92). Taking into a

ount the said above andthe formulas (MT328)-(MT330), we get the algebra of the 
onstraints:nHi;Hs ko = Hk�iÆ3(x� ex) +Hs i�skÆ3(x� ex) + (:::)a�a; (95)nHi;Hs 0o = H0�iÆ3(x� ex) + (:::)a�a; (96)nH0;Hs 0o = �ikHk�iÆ3(x� ex)� �sikHs i�kÆ3(x� ex) + (:::)a�a; (97)n�a;Hs io = 0; (98)n�a;Hs 0o = 0; (99)n�a;�sbo = "ab
�
Æ3(x� ex): (100)Here all variables are to be expressed through the Qia and Pbl .It is essential that the transition from the Arnowitt-Deser-Misner (ADM) variables toFP ones does not 
hange the algebra of 
onstraints, be
ause it is a 
anoni
al transforma-tion. If we go to the tetrad formalism, the number of pairs of 
anoni
al variables rises,and new 
onstraints appear. By (95)-(100) one sees that in the 
lassi
al tetrad formalismall 
onstraints are of the 1st 
lass. The 1st-order Lagrangian for the 
losed universe mustnow be written in the form:L(rep)(1) = Pai �0Qia �NH0 �N iHi � �a�a; (101)where �a � �a(x) � �a(x0; x1; x2; x3)jx0=
onst are new Lagrange multipliers, and the H0,Hi are the same quantities as in ADM or FP formalisms, but expressed through the Qiaand Pai by (66), (76).The expli
it form of the operators Hi and H0 is obtained in the FP formalism (seep. 7 of notes "Quantization of gravitation I. Metri
 tensor approa
h"). By (MT365),(MT339), (66), (76), (60), (62), (63) we �nd thatHi = �2q� 14 qkl� 3ri(q� 14�kl)� 3rk(q 14�il)� == �2�� 12QkbQlb� 3ri(� 12 12Qal Pak)� 3rk(� 12 12Qal Pai )� == �Q 12QkbQlb� 3ri(Q 12Qal Pak)� 3rk(Q 12Qal Pai )� = �Qkbelb� 3ri(eal Pak)� 3rk(ea
Pai )� == �Qkbelbeal � 3riPak � 3rkPai� = Qka � 3rkPai � 3riPak� ; (102)11



by (MT368), (MT339), (60), (63), (62), (66), (76)H0 = �2{q 14 � (qlpqmq � qlmqpq)�lm�pq � q 142{! ( 3R� 2�) == � 2{p�� (QlaQpaQmb Qqb �QlaQma QpbQqb)�12Q
lP
m��12QdpPdq�� �p�2{ � ( 3R� 2�) == 14 � 2{Q 12 ��QkbQlbP
kP
l � (QkbPbk)2�� q 122{! ( 3R� 2�); (103)where the 3R must be expressed in terms of the Qka.Let us represent the Hi in slightly di�erent form. By (102)Hi = Qbk( 3rkPbi � 3riPbk) = Qbk(�kPbi � 3�lkiPbl + Ab
k P
i � �iPbk + 3�likPbl � Ab
k P
k) == Qbk(�kPbi � �iPbk) + (QbkAb
k )P
i � A
i"
abQakPbk; (104)where we take Aabi = A
i"
ab (105)with the Aabi = Aiab being 
onstru
ted from the eai , eik, Æik, Æik like the A�AB are 
on-stru
ted from the eA� , e�A, �AB, �BA. As it is seen from (25), (26), (37), (45), (48),Aabi = AAB� ���=i;A=a;B=b: (106)By (80) Hi = Qbk(�kPbi � �iPbk) + (QbkAb
k )P
i � A
i�
: (107)Further, by (106), (25), (26)QbkAb
k = eebk(Sblkel
 � S
lkelb � eibSdilel
edk); (108)where it is taken into a

ount (37), (102);QbkAb
k = eebkSblkel
 � eebkS
lkebl � eeibSbieel
 = 2eebkSblkel
 == eebk(�lebk � �kebl )el
 = eebk(�lebk)el
 � eebk(�kebl )el
 == (�le)el
 + eebkebl�kel
 = (�le)el
 + e�lel
 = �l(eel
) = �lQl
; (109)by (109), (107) Hi = Qbk(�kPbi � �iPbk) + (�lQlb)Pbi � Abi�b; (110)i. e. Hi + A
i�
 = Qbk(�kPbi � �iPbk) + (�kQkb)Pbi : (111)The linear 
ombination Hi + A
i�
 of the 
onstraints is also the 
onstraint. It hasthe simple geometri
al sense. Let us show that the Hi + A
i�
 is the generator of su
h12



a 3-dimensional transformations of 
oordinates on the surfa
e x0 = 
onst, that do not
hange tetrad basi
 ve
tors as geometri
al obje
ts. We have at in�nitesimal "i � "i(x)�Z d3x "i(Hi + A
i�
); Qsak� = �Z d3x(�l(QblPbi)�Qbl�iPbl )"i; Qsak� == � Z d3x(�l(QblÆabÆki Æ3(x� ex))�Qbl�i(ÆbaÆkl Æ3(x� ex)))"i == � Z d3x(�l(QalÆ3(x� ex))"k �Qak(�iÆ3(x� ex))"i) == Z d3x(Qal�i"k � �i(Qak"i))Æ3(x� ex) = Qsal�sl"sk � �si(Qsak"si); (112)�Z d3x "i(Hi + A
i�
);Psak� = �Z d3x "i ��l(QblPbi)�Qbl�iPbl� ;Psak� == Z d3x "i ��l(ÆbaÆlkÆ3(x� ex)Pbi)� ÆbaÆlkÆ3(x� ex)�iPbl� == Z d3x �"i�k(Pai Æ3(x� ex))� "i(�iPak)Æ3(x� ex)� == � Z d3x (Pai (�k"i) + (�iPak)"i)Æ3(x� ex) = �Psai �sk"si � (�siPsak)"si: (113)Thus, �Z d3x "i(Hi + Abi�b); Qsak� = Qsal�sl"sk �Qsak�si"si � "si�siQsak; (114)�Z d3x "i(Hi + Abi�b);Psak� = �Psai �sk"si � "si�siPsak: (115)On the other side, by the transformation law of 3-tensors, as xi ! x0i = xi + "i(x), whileunmoved ve
tors of tetrad basis, taking into a

ount (MT232) one getsQ0ak(x) = Q0ak(x0 � ") = �"i�iQak +Q0ak(x0) == �"i�iQak +p� 0(x0)(e0ak(x0)) = �"i�iQak +p�(x)(1� �i"i)�eal(x)�(xk + "k)�xl � == �"i�iQak +p�(x)eal(x)�p�eak�i"i �p�eal�l"k == Qak(x) +Qal�l"k �Qak�i"i � "i�iQak: (116)Sin
e, further, the PaiQia transform as p�, and Qia = p�eia, the Pai is a universal 3-tensor.Therefore, at the 
onsidered 
hange of 
oordinates,P0ak (x) = �"i�iPak + P0ak (x0) = �"i�iPak + Pal (x)�(x0l � "l)�x0k == �Pai (x)�k"i � "i�iPak + Pak(x): (117)So, at the transformation of 
oordinatesÆQak � Q0ak(x)�Qak(x) = Qal�l"k �Qak�i"i � "i�iQak; (118)13



ÆPak � P0ak (x)� Pak(x) = �Pai (x)�k"i � "i�iPak: (119)Comparing (114), (115) with the (118), (119), we see that the quantities Hi + Abi�b areindeed the generators of the su
h 3-dimensional transformations of 
oordinates on thesurfa
e x0 = 
onst, whi
h do not 
hange the position of the vierbein basi
 ve
tors in thespa
e. W. r. t. these transformations the H0 is a stable density of a 3-invariant, and theHi and Abi�b are the stable densities of 
oordinate 3-ve
tors. So, repeating the derivationof the equalities (MT268), (MT269), we �nd thatnHi + Abi�b;Hs ko = �Hs i�skÆ3(x� ex) +Hk�iÆ3(x� ex); (120)nHi + Abi�b; As
k�s
o = �As 
i�s
�skÆ3(x� ex) + A
k�
�iÆ3(x� ex); (121)nHi + Abi�b;Hs 0o = H0�iÆ3(x� ex): (122)It follows from (120), (122), due to (98), (99), thatnHi;Hs ko = �Hs i�skÆ3(x� ex) +Hk�iÆ3(x� ex)� nAbi ;Hs ko�b; (123)nHi;Hs 0o = H0�iÆ3(x� ex)� nAbi ;Hs 0o�b: (124)This is a detailed elaboration of the formulas (95), (96). It follows also from (86), (89)thatnHi + Abi�b;Hs k + As
k�s
o = �(Hs i+As i�s
)�skÆ3(x� ex)+ (Hk+A
k�
)�iÆ3(x� ex): (125)By (81) it 
an be written, further,�Z d3xAbi�b"i; Qs ld� = Z d3xAbi"i��b; Qs ld� = "dbaQs ldAsai "si = "siAsdbi Qs lb; (126)analogously, �Z d3x "iAbi�b;Psak� = Z d3x "i nAbi ;Psako�b + "siAsabi Psbk: (127)By analogy with the fHi + Abi�b;Hs 0g we havenHi + Abi�b;�sao = �a�iÆ3(x� ex): (128)From the equalities (114), (115) and (126), ( 127) we �nd that�Z d3x "iHi; Qsak� = Qsal�sl"sk �Qsak�si"si � "si(�siQsak + Asabi Qskb); (129)�Z d3x "iHi;Psak� = �Psal �sk"sl � "si(�siPsak + Asabi Psbk)� Z d3x�"i nAbi ;Psako�b� : (130)The formulae (129) di�ers from (114) by the 
hange of the usual derivative �iQak onto
ovariant one only in tetrad index. This means that the quantities Hi are the generatorsof the su
h variations of the fun
tions Qib, whi
h are generated by the 
hange of the
oordinates, 
arrying with itself the vierbein system via parallel transfer. The samefollows from (130) w. r. t. the Pak, if one adopts the 
onstraint �a = 0.14



3 Tetrad variables having the property of 
onne
tion,"loop variables"With the help of 
anoni
al transformation one 
an go from the variablesQia, Pai , introdu
edabove, to the variables, having the form of a 
onne
tion. This allows then to apply themethods, used in the gauge �eld theory, what leads to the so 
alled "loop quantum gravitytheory". Let us 
onsider the main ideas related to this formalism. We use the vierbeinframe, whi
h is related to the 
oordinate frame as des
ribed in se
. 2. Let us start fromdynami
al variables Qia, Pai , introdu
ed in (57) and (75). First of all, let us 
onstru
t theappropriate 
lassi
al 
anoni
al formalism.Earlier (see eq-ns (25), (26)), the following formula for the 
oeÆ
ients of vierbein
onne
tion was obtained:A�;AB � �ADAD� B = �A�;BA = �ADSD��e�B � �BDSD��e�A � eE� �EDe�ASD��e�B; (131)where SD�� = 12 ���eD� � ��eD� � : (132)In the used vierbein frame, where e�(0) = n�; e0a = 0; e(0)i = 0, the 3-dimensional partof the 
onne
tion (131) has the formAi;ab = �aDSD�ie�b ��bDSD�ie�a � eEi �EDe�aSD��e�b = ÆadSdkiekb � ÆbdSdkieka� e
iÆ
dekaSdklelb; (133)i. e. Ai;ab = Sakiekb � Sbkieka � e
iekaS
klelb: (134)Here Saki = 12 (�keai � �ieak) : (135)It is taken into a

ount that 3-dimensional indi
es a; b; : : : are lifted up or pulled downwith the help of the symbols Æab, Æab , and therefore there is no di�eren
e between up anddown indi
es a; b; : : :. It is seen that with our 
hoi
e of vierbein frame the 3-dimensionalpart Ai;ab of the 
onne
tion is 
onstru
ted from vierbein parameters eia,eai and symbolsÆab, exa
tly in the same way as the 
onne
tion Am;AD is 
omposed from emA , eBm and thesymbols �AB, i. e. Ai;ab = 3Ai;ab; (136)where the 3Ai;ab is vierbein 
onne
tion on the 3-dimensional hypersurfa
e x0 = 
onst,
orresponding to the lo
al invarian
e group SO(3). A

ordingly,Ai;ab = Aiab = Aiab = �Ai;ba: (137)Obviously, one 
an also write Aiab = "ab
A
i ; (138)15



where A
i = 12"
abAiab = 12"
ab �2Sakiekb � e
iekaS
klelb� : (139)Here we have taken into a

ount that "
abSaki = �"
abSbkieka and used the (133).Let us express the quantities A
i in terms of the variables Qia, Qai . By the de�nitions,introdu
ed above eia = Q� 12Qia; eai = Q 12Qai ; (140)where Q = det �Qia� ; QiaQai = Æik: (141)Evidently, �iQ 12 = 12Q� 12QQak�iQka = 12Q 12Qak�iQka; (142)�iQak = �Qal ��iQlb�Qbk: (143)The equality (143) is obtained by the di�erentiation of the relation QakQkb = Æab , and the(142) is true be
ausedet(Qia+ dQia) = �the algebrai
 
omplement of the matrix Qlb�ai dQia = QQai dQia: (144)By (139), (135), (140), (142) we obtain2A
i = "
ab�(�keai � �ieak) ekb � eka 12 ��kedl � �ledk� elbedi� == 14"
ab�4Qkb�kQai + 2QaiQkbQfm�kQmf � 4Qkb�iQak � 2ÆabQfm�iQmf ��QbiQkaQfm�kQmf � 2Qka(�kQdl )QlbQdi +QaiQlbQfm�lQmf + 2Qka(�lQdk)QlbQdi�: (145)Due to "
ab = �"
ba, the term, 
ontaining the Æab , does not 
ontribute here, and some otherterms 
oin
ide. Therefore,A
i = 12"
ab �QaiQkbQdl �kQld +QlaQkbQdi �kQdl +Qkb�kQai +Qak�iQkb� : (146)Studying the properties of the 
ontinuation of the gravitational �eld into the 
omplexregion (that we will 
on
ern later), A. Ashtekar has found that the following 
hange ofvariables is a 
anoni
al one: Q0ia = Qia; (147)P0ai = Pai + bAai ; (148)where the b is an arbitrary 
onstant parameter, i. e. that�Q0ia ; Qs 0kb � = �Qia; Qska� = 0; (149)16



nQ0ia ;Ps0ba o = nQia;Psbko = ÆikÆbaÆ3(x� ~x); (150)nP0ai ;Ps 0bko = nPai ;Psbko = 0: (151)Sin
e the Aai depends only on the Qla,and not on the Pal , the equalities (149) and (150)are ful�lled trivially, but the 
orre
tness of the relation (151) is a very nontrivial fa
t.Indeed,nP0ai ;Ps 0bko = nPai + bAai ;Psbk + bAs bko = nPai ;Psbko + bnAai ;Psbko + bnPai ; Asbko : (152)We have taken into a

ount that nAai ; Asbko = 0 be
ause the Aai depends only on the Qia.Thus, in order that the transformation (147), (148) were 
anoni
al, the followingequality must be ful�lled:nPai ; Asbko+ nAai ;Psbko � nPai ; Asbko� nPsbk; Aaio = 0: (153)By the de�nition of Poisson bra
kets one hasnPai ; Asbko = Zt0=
onst d3x0 � ÆPai (x)ÆQl
(x0) ÆAbk(ex)ÆPl
(x0) � ÆAbk(ex)ÆQl
(x0) ÆPai (x)ÆP
l (x0)� ; (154)where x � (x1; x2; x3), and the Æ(:::)Æ(:::) means the 3-dimensional fun
tional derivative. Owingto ÆPai (x)ÆQl
(x0) = 0; ÆPai (x)ÆP
l (x0) = Æa
 ÆliÆ(x� x0); (155)we get nPai ; As lko = �ÆAbk(ex)ÆQla(x) : (156)Thus, the relation (153) takes the formÆAbk(ex)ÆQai (x) � ÆAai (x)ÆQbk(ex) = 0: (157)As in the 
ase of usual fun
tions fk(x), when the equality �ifk � �kfi = 0 is equivalentto the existen
e of su
h a '(x) that fi = �i', the relation (157) is ful�lled then and onlythen when there exists a fun
tional F [Qia℄ of fun
tions Qia(x) for whi
hAai (x) = ÆFÆQia(x) : (158)Su
h a fun
tional does exist and is equal toF = 12"
ab Zt=
onst d3xQi
Qak�iQkb : (159)
17



The possibility to represent the 
ompli
ated expression like (146) in the form (158), (159)is highly nontrivial. A. Ashtekar dis
overed this, going by 
ir
uitous way (this will be
onsidered brie
y later). Now we simply 
he
k the equality (158) at the 
ondition (159)dire
tly. Let us make this.Under the variation ÆQi
 of the �eld Qi
 the variation of the fun
tional F [Qi
(x)℄ isdetermined, in a

ordan
e with (159), by the equality2ÆF = "
ab Z d3x �ÆQi
Qak�iQkb +Qi
ÆQak�iQkb +Qi
Qak�iÆQkb� == Z d3x �"
abÆQi
Qak�iQkb + "dabQld(�Qai ÆQi
Q
k)�lQkb + "ba
QkbQai �kÆQi
� == Z d3x�"
abQak�iQkb � "dfgQldQfiQ
k�lQkg + "
ab(�kQkbQai +Qkb�kQai )� ÆQi
: (160)Here we use (143) and perform the 
hange"ba
QkbQai �kÆQi
 �! �"ba
 ��k(QkbQai )� ÆQi
 = "
ab �(�kQkb )Qa
 +Qkb�kQai � ÆQi
; (161)dropping the nonessential here surfa
e term in the integral. Therefore2 ÆFÆQi
 = "
ab �Qak�iQkb +Qai �kQkb +Qkb�kQai �� "dfgQldQfiQ
k�lQkg : (162)Let us show that this 
oin
ides with the (146). Take into a

ount that 12"
ab"abh = Æ
h,"
ab = �"
ba and, hen
e,�"dfgQ
k = �12"
ab"dfg"abhQhk = 12"
ab"dfg"bahQhk == 12"
ab �ÆdbÆfaÆgh + ÆdaÆfhÆgb + ÆdhÆfbÆga � ÆdaÆfbÆgh � ÆdbÆfhÆga � ÆdhÆfaÆgb�Qhk == "
ab �ÆdbÆfaÆgh + ÆdaÆfhÆgb + ÆdhÆfbÆga�Qhk: (163)We used the known formula expressing the "dfg"bah in terms of the produ
ts of the Æab-symbols. By (162), (163) we have2 ÆFÆQi
 = "
ab�Qak�iQkb +Qai �kQkb +Qkb�kQai++ �ÆdbÆfaÆgh + ÆdaÆfhÆgb + ÆdhÆfbÆga�QldQfiQhk�lQkg� == "
ab�Qak�iQkb +Qai �kQkb +Qkb�kQai++QlbQaiQhk�lQkh +QlaQhiQhk�kQkb +QlhQblQhk�lQka�: (164)Evidently,QlhQbiQhk�lQka = QbiÆlk�lQka = Qbi�kQka; "
ab �Qai �kQkb +Qbi�kQka� = 0: (165)Therefore some terms in the (164) are 
an
elled. Further,"
abQlaQhiQhk�lQkb = �"
abQlaQhi �lQhkQkb = "
abQlbQhiQka�lQhk: (166)Hen
e, ÆFÆQi
 = 12"
ab �Qak�iQkb +Qkb�kQai +QlbQaiQhk�lQkh +QlbQhiQka�lQhk� : (167)18



That 
oin
ides with the (146). Thus the equality (158) is proven under the 
ondition(159), and, therefore, the relations (147), (148) de�ne the 
anoni
al transformation.Having performed the 
anoni
al transformation (147), (148) we 
an then perform othertwo transformations, 
anoni
al 
hara
ter of whi
h is evident. Let us putQ00ia = bQ0ia = bQia; (168)P00ai = 1bP0ai = Aai + 1bPai ; (169)and then Bai = P00ai = Aai + 1bPai ; (170)�ia = �Q00ia = �bQia: (171)We will 
onsider the Bai as new 
anoni
al 
oordinates, while the �ia as 
anoni
al momenta.The transition from the Qia, Pai to the Bai , �ia is a 
anoni
al transformation. This trans-formation was proposed by A. Ashtekar. The 
onstant b is 
alled the Barbero-Immirziparameter. It 
an take any value.Let us 
lear up how the quantity Pai transforms under the 
hange of 
oordinates, andalso under the 
hange of vierbeins, whi
h does not violate the 
ondition e�(0) = n�. By(76) Pai = 2�ikQka; (172)and by the (MT357) �ik = � 1(2{)2p�Jik;lmP lm: (173)and in a

ordan
e with (MT163)P lm = �2Jlm;rsKrs: (174)Due to Jik;lmJlm;rs = Ærslm = 12 (Ærl Æsm + ÆrmÆsl ) ; (175)we get �ik = �� 1(2{)2p� Jik;lm���2Jlm;rs�Krs = 12{p�Kik (176)and in a

ord with (172)Pai = 2� 1(2{)p�Kik�Qka = 22{ Qkap�Kik (177)or Pai = 22{ ekaKki: (178)19



Sin
e the eka, Kki are stable 3-dimensional tensors w. r. t. 
oordinate transformations andtensors (in parti
ular, ve
tor and invariant) w. r. t. the 3-dimensional vierbein SO(3){ transformations, the Pai is a stable 
oordinate ve
tor and a vierbein SO(3)- ve
tor.Therefore, the quantity Pabi � Pai b = "ab
P
i (179)is a vierbein SO(3) { tensor and 
hanges under the SO(3) { transformations of vierbeinsa

ording to the rule bP0i = b! bPib!�1; (180)where the bPi is the matrix with elements Piab, and the b! is the matrix of SO(3) {transformation, su
h that b!b!T = I: (181)At the same time the quantity Aai b � Aiab = "ab
A
i (182)is a 3-dimensional SO(3)- 
onne
tion (as was 
lari�ed above). So, it transforms underthe SO(3) { transformations of vierbeins as follows:bA0i = b! bAib!�1 + b!�ib!�1: (183)This formulae is 
ompletely analogous to the 
orresponding relation of the gauge �eldtheory (with the repla
ing of SU(3)-matri
es by SO(3)-matri
es, and 4-dimensional spa
e-time by 3-dimensional spa
e). The formulae (183) 
an be got from the requirement thatthe 
ovariant derivative of the vierbein ve
tor3riaa = �iaa + Aiab ab (184)has to be a vierbein ve
tor, i. e. that the following relation has to be valid:3ri(!abab) = !ab 3riab: (185)Beside of this, the 
oeÆ
ients of the 
onne
tion Aiab are stable ve
tors w. r. t. 3-dimensional 
oordinate transformations.Let us form now the matrix bBi with the elementsBai b = Biab = "ab
B
i : (186)By (170) one has bBi = bAi + 1b bPi (187)and, by the (187), (180), (183), under the SO(3) { transformation of vierbeins, one getsbB0i = b! bBib!�1 + b!�ib!�1: (188)In other words, the quantities Biab transform under the SO(3) { 
hange of vierbeins in thesame way as the Aiab, i. e. the Biab are the 
oeÆ
ients of new SO(3) { 
onne
tion. This20



transition to the generalized 
oordinates, having the 
hara
ter of the 
onne
tion, was thegoal of the whole 
onstru
tion. Let us remark that under the 3-dimensional 
oordinatetransformations the quantity Biab behaves as a stable ve
tor be
ause the Aiab and thePia
 have this property.With the help of the 
onne
tion bBi one 
an 
onstru
t 
ontour integrals in the way,analogous to the 
onstru
tion of the so 
alled Wilson-Polyakov integrals in gauge theory.Let us de�ne, at �rst, the notion of 
ontour integral with the 
onne
tion bAi. Let usparameterize some 
urve � (
ontour) on the hypersurfa
e t = 
onst with the help of theequality xi = f i(�) where the � is the parameter varying along the 
ontour. We assumethat the derivatives �xi=�� do not be equal to zero simultaneously nowhere.Let aa(�) to be a vierbein ve
tor on the 
ontour � at the point �. We de�ne a paralleltransportation of a ve
tor aa(�) to in�nitesimally 
lose point � + d� of the 
ontour � sothat the quantity aa(� + d�) resulting under the transportation be a ve
tor at the point� + d�. This 
ondition is ful�lled if one takesaa(� + d�) = aa(�)� Aai b(x(�))ab(�)dxi(�)d� d�: (189)Indeed, let us write the equality (189) in the forma(� + d�) = a(�)� bAi(x(�))a(�)dxi(�)d� d� (190)and take into a

ount that under the 
hange of vierbeins we geta0(�) = b!(x(�))a(�); (191)bA0i(x(�)) = b!(x(�)) bAi(x(�))b!�1(x(�)) + b!(x(�))�b!�1(x)�xi ����xi=xi(�) == b!(x(�)) bAi(x(�))b!�1(x(�))� �b!(x)�xi ����xi=xi(�)b!�1(x(�)): (192)We obtain after the 
hange of vierbeinsa0(� + d�) = a0(�)� bA0i(a(�))a0(�)dxi(�)d� d� = b!(x(�))a(�)�� b!(x(�)) bAi(x(�))b!�1(x(�))� �b!(x)�xi ����xi=xi(�)b!�1(x(�))!!(x(�))a(�)dxid� d� == b!(x(�))a(�) + �b!(x)�xi ����xi=xi(�)dxid� d�a(�)� !(x(�)) bAi(x(�))a(�)dxid� d� == b!(x(� + d�))a(�)� !(x(�)) bAi(x(�))a(�)dxid� d�: (193)At the ne
essary 1st order in the d� we havea0(� + d�) = b!(x(� + d�))�a(�)� bAi(x(�))a(�)dxid� d�� = b!(x(� + d�))a(� + d�): (194)Thus we get the ve
tor form of the transformation:a0(� + d�) = b!(x(� + d�))a(� + d�): (195)21



Let us divide the 
ontour � in in�nitesimally small intervals and, repeating the paralleltransportation along the one interval in�nitely many times, de�ne the ve
tor a(�) at allpoints of the 
ontour, starting from a given value of this ve
tor at one point. The obtainedve
tor fun
tion a(�) � aa(�), in a

ordan
e with the (190), satis�es at every point of the
ontour the following 
ondition:a(� + d�)� a(�) + bAi(x(�))ba(�)dxid� d� = 0; (196)or �da(�)d� + bAi(x(�))ba(�)dxid� � d� = 0: (197)Due to the arbitrariness of the d� we get the di�erential equationda(�)d� + bAi(x(�))a(�)dxid� = 0; (198)or daa(�)d� + bAiab(x(�))ab(�)dxid� = 0: (199)This equation is 
alled the equation of parallel transportation of the ve
tor along the
urve.If two points x(1) and x(2) are 
onne
ted by two di�erent 
urves, then the paralleltransportation from the point x(1) to the point x(2) 
an give di�erent results. In parti
ular,the ve
tor 
an 
hange after the parallel transportation along the 
losed 
ontour to theinitial point.The equation (198) is linear and therefore its solution 
an be written in the followingform: a(�) =
W (�; �1;�)a(�1); (200)where the a(�1) is the given value of the ve
tor a at the initial point x(�1) of the 
ontour�, and the 
W (�; �1;�) is a matrix depending on the 
ontour �, its initial point �1 and thepoint �, to whi
h the ve
tor a is transported. Substituting the (200) into the (198), wesee that the matrix 
W (�; �1;�) satis�es the equationd
W (�; �1;�)d� = � bAi(x(�))
W (�; �1;�)dxi(�)d� (201)at the initial 
ondition 
W (�; �1;�) = bI; (202)where the bI is the unit matrix.The equation (201) has the same form as the S
hroedinger equation in quantum me-
hani
s. But we have instead of the time the parameter �, and the quantity� bAi(x(�))dxi(�)d�instead of the �iH.
22



Therefore the solution of the equation (201) 
an be, as in the 
ase of S
hroedingerequation, written formally as an ordered exponent of the integral over the points of the
ontour: 
W (�; �1;�) = P � !�1 exp0�� �Z�1 d~�dxi(~�)d~� bAi(x(~�))1A : (203)Here the symbol P � !�1 means the ordering of quantities, depending on points of the
ontour �, from the �1 on the right to the � on the left (analogously to the ordering intime in the 
ase of S
hroedinger equation). The integral (203) is the analog of the Wilson-Polyakov 
ontour integral in the gauge �eld theory.Under the SO(3) { transformations of the vierbein frame,e0ai = !abebi (204)the equality a(�) = 
W (�; �1;�)a(�1): (205)turns into the a0(�) = 
W 0(�; �1;�)a0(�1); (206)where a0(�) = b!(x(�))a(�); a0(�1) = b!(x(�1))a(�1); (207)so that b!(x(�))a(�) =
W 0(�; �1;�)b!(x(�1))a(�1); (208)or a(�) = b!�1(x(�))
W 0(�; �1;�)b!(x(�1))a(�1): (209)Comparing this with the (205), we �nd the transformation law of the matrix 
W (�; �1;�)under the 
hange of the vierbein frame:W (�; �1;�) = b!�1(x(�))
W 0(�; �1;�)b!(x(�1)); (210)or 
W 0(�; �1;�) = b!(x(�))
W (�; �1;�)b!�1(x(�1)): (211)Let now the 
ontour � to be 
losed (be a loop), so thatx(�2) = x(�1); (212)where the x(�2) is the �nal point of the 
ontour. Then
W 0(�2; �1;�) = b!(x(�2))
W (�2; �1;�)!�1(x(�1)) = b!(x(�1))
W (�2; �1;�)!�1(x(�1)) (213)23



and trW 0(�2; �1;�) = trW (�2; �1;�); (214)where the tr
W is the tra
e of the matrix 
W .Thus, the tra
e of the 
ontour integral over the points of 
losed 
ontour is invariantunder the SO(3) { transformations of vierbeins. By the ve
tor 
hara
ter of the quantityAiab w. r. t. 3-dimensional 
oordinate transformation the tra
e of su
h a 
ontour integralis also invariant under these 
oordinate transformations, if the 
ontour � as a geometri
alobje
t is not displa
ed. But if the 
oordinate frame 
arries the 
ontour with itself underthe transformation, so that the equation of the 
ontour in new 
oordinates remains of thesame form as in initial 
oordinates, then the tra
e of the 
orresponding integral 
hanges.New 
onne
tion Biab transforms under the 
hange of vierbein and 
oordinate framesin the same way as the Aiab. So the 
ontour integral 
onstru
ted from the 
onne
tionBiab, W (�; �1;�; [B℄) = P � !�1 exp0�� �Z�1 d� dxi(�)d� bBi(x(�))1A (215)has the same properties as the 
ontour integral (203) with the 
onne
tion Aiab. In par-ti
ular, the tra
e of the integral (218) taken over the 
losed 
ontour �,trW (�2; �1;�; [B℄) at xi(�1) = xi(�2) (216)is invariant under the transformation of the 3-dimensional vierbein frame and also 3-dimensional 
oordinate frame, if the 
ontour is not displa
ed as a geometri
al obje
t atthe 
hange of 
oordinates. Here as in the 
ase of the gauge �eld, the 
omponents of the
onne
tion Biab are generalized 
anoni
al 
oordinates (after the 
anoni
al transformation(170), (171), while the 
onne
tion Aiab was a 
ompli
ated fun
tion (146) of the 
anoni
al
oordinates Qia before the 
anoni
al transformation.Thus, one 
an easily 
onstru
t from the 
anoni
al variables Biab any number of quan-tities with the above mentioned invarian
e properties. This is a basi
 point of the "loopquantum gravity".In terms of the variables Bai , �ia the 
anoni
al form of the a
tion is as follows:Srep(B;�)(1) = Z d4x ��ia�0Bai �NH0 �N iHi � �a�a� ; (217)where the H0, Hi and �a are obtained from the same quantities, de�ned by the equalities(103), (102), (80), with the help of the substitutionQia = �1b�ia; (218)Pai = bBai � bAai ��Qia=� 1b�ia; (219)that follows from the (170), (171). Here, by (146) we haveA
i ��Qia=� 1b�ia = "
ab ��ai�kb�dl �k�ld +�la�kb�di �k�dl +�kb�k�ai +�ak�i�kb� ; (220)24



where the �ai is de�ned by the equality�ka�ai = Æki (221)(�ai is not obtained from the �ka by the lowering of the index with the �ik).Let us express expli
itly the 
onstraints �a, H0, Hi in terms of the Bai and �ia. By(80), (219), (218) �a = "ab
QibP
i = �"ab
�ibB
i + "ab
�ibA
i : (222)By (220) we have"ab
�ibA
i = 12"ab
�ib"
fg ��fi�kg�dl �k�ld +�lf�kg�di �k�dl +�kg�k�fi +�fk�i�kg� == 12 �ÆafÆbg � ÆagÆbf��ib ��fi�kg�dl �k�ld +�lf�kg�di �k�dl +�kg�k�fi +�fk�i�kg� == 12�ib��ai�kb�dl �k�ld +�la�kb�di �k�dl +�kb�k�ai +�ak�i�kb���bi�ka�dl �k�ld � �lb�ka�di �k�dl � �ka�k�bi � �bk�i�ka� == 12��ka�dl �k�ld +�la�kb�k�bl +�kb�ib�k�ai +�ak�ib�i�kb��3�ka�dl �k�ld � �lb�ka�k�bl � �ka�ib�k�bi � �k�ka�: (223)Due to �dl �k�ld = ��ld�k�dl ; �ak�ib�i�kb = �(�i�ak)�ib�kb ; (224)some terms are 
an
eled. Beside of that,�la�kb�k�bl = �(�k�la)�kb�bl = ��l�la: (225)Therefore, "ab
�ibA
i = ��l�la: (226)By (222), (226) �a = ��k�ka � "ab
�ibB
i = � ��k�ka � �kbBkba� ; (227)where Bkba = "ba
B
i : (228)Let us represent this in a slightly di�erent form. Let � = det�ia. By (218), (60)� = Q � detQia = �b�3�: (229)and eia = QiapQ = �1b �iap�b�3� = �b 12 �iap�� : (230)
25



Hen
e the �ia=p�� is, as the eia, a stable 3-dimensional tensor. One 
an de�ne the 3-dimensional 
ovariant derivative of that tensor with the vierbein 
onne
tion Biab, denotingit by 3Brk � �iap���. Then we writep��3Br� �iap��� = p����i� �iap���+ 3�iik �kap�� � �iap��Biba� == �i�ia +p����i 1p����ia + 3�iik�ia � �ibBiba: (231)However, by the (229)p����i 1p����ia =p�� ��i 1p���ia = � 1p�� ��ip���ia = � 3�kki�ia: (232)Therefore p��3Bri� �iap��� = �i�ia � �ibBiba; (233)and the 
onstraint �a, (227), 
an be written in a 
ovariant form�a = �p��3Bri� �iap��� : (234)To transform the H0 and Hi let us introdu
e the quantity3F abik(A) = �iAkab � �kAiab + Aadi Adbk � Aadk Adbi ; (235)
onstru
ted from the 3-dimensional vierbein 
onne
tion Aabk similarly to the �eld strengthtensor 
onstru
tion from ve
tor potentials in nonabelian gauge �eld theory. The quantity3F abik(A) is simply related with the 
urvature tensor 3Rlm;ik of the 3-dimensional hypersurfa
ex0 = 
onst. Indeed, the 3-dimensional analog of the equality (22) has the formAabi = Aiab = e�l 3�limemb + eal �ielb: (236)Substituting the (236) into the (235), we �nd that3F abik(A) = �i �e�l 3�lkmemb + eal �kelb�++�e�l 3�limemd + eal �ield��edn 3�nkqeqb + eqn�kenb�� (i ! k); (237)where the (i ! k) denotes a quantity obtained from a given one by the ex
hange i �! k,k �! i. Further,3F abik(A) = eal ��i 3�lkm + 3�lim 3�mkq� eqb + (�ieal ) 3�lkmemb + eal 3�lkm�iemb + (�ieal )�kelb++eal �i�kelb + eal 3�lim�kemb � (�ieal ) 3�lkqeqb � (�ieal )(�kelb)� (i ! k): (238)Some terms here are 
an
eled ea
h with other or with the (i ! k) be
ause in the sumthey are symmetri
 w. r. t. the ex
hange i �! k, k �! i. Therefore3F abik(A) = eal ��i 3�lkm + 3�lim 3�mkq � (i ! k)� eqb: (239)26



At the same time, 3Rlm;ik = �i 3�lkm � �k 3�lim + 3�liq 3�qkm � 3�lkq 3�qim; (240)so that 3F abik(A) = eal 3Rlm;ikemb ; (241)i. e. the strength 3F abik(A) is the 3-dimensional 
urvature tensor, related in two indi
es tothe vierbein, with 3F abik(A) = � 3F baik(A).Let us de�ne the quantity 3F aik(A) by3F abik(A) = "ab
 3F 
ik(A): (242)From the equalities (235), (241) and Aiab = "ab
A
i we get3F 
ik(A) = �iA
k � �kA
i � "
abAaiAbk = 12"
abelaemb 3Rlm;ik; (243)where 3Rlm;ik = �ln 3Rnm;ik with3Rlm;ik = 3Rik;lm = � 3Rki;lm = � 3Rik;ml: (244)Together with the 3F abik(A), 3F 
ik(A) let us introdu
e the quantities 3F abik(B), 3F 
ik(B), 
on-stru
ted from the 
onne
tion Biab in the same way as the 3F abik(A), 3F 
ik(A) are 
onstru
tedfrom the Aiab: 3F abik(B) = 3F abik(A)���Aabi �!Babi ; (245)3F 
ik(B) = 3F 
ik(A)���Aai�!Bai ; (246)Let us return to the 
onstraints Hi. By (102)Hi = Qka � 3rkPai � 3riPak� : (247)On the other side, by (243), (246), (170)3F 
ik(B) = �iB
k � �kB
i � "
abBai Bbk == �i�A
k + 1bP
k�� �k �A
k + 1bP
i�� "
ab�Aai + 1bPai��Abk + 1bPbk� == 3F 
ik(A)++1b ���iP
k � "
abAaiPbk � 3�likP
l�� ��kP
i � "
abAakPbi � 3�lkiP
l��� 1b2 "
abPaiPbk; (248)
27



where we have added the equal to zero quantity1b �� 3�likP
l � (� 3�likP
l )� : (249)Or,3F 
ik(B) = 3F 
ik(A) + 1b � 3riPak � 3rkPai�� 1b2 "
abPaiPbk == 12"
abelaemb 3Rik;lm + 1b � 3riPak � 3rkPai�� 1b2 "
abPaiPbk; (250)where we have taken into a

ount the (243).Hen
e,�i
 3F 
ik(B) = 12�i
"
abelaemb 3Rik;lm + 1b�i
� 3riP
k � 3rkP
i�� 1b2�i
"
abPaiPbk: (251)By (171) �ia = �bQia, so that with the equality (247) we obtain1b�i
� 3riP
k � 3rkP
i� = �Qia � 3riPak � 3rkPai� = �Hk: (252)Further, the tensor 3Rik;lm satis�es the identity"ikl 3Rik;lm = 0; (253)whi
h is a 3-dimensional analog of the 4-dimensional identity"���
R��;
Æ = 0: (254)Therefore, taking into a

ount the equality�ia = �bQia = �beeia; (255)where e = det eai = (det eia)�1, we �nd that�i
"
abelaemb 3Rik;lm = �beei
elaemb "
ab 3Rik;lm = �b"ilm 3Rik;lm = 0; (256)be
ause of 3Rik;lm = 3Rlm;ik.Finally, by (222) and (255) we have� 1b2�i
"
abPaiPbk = 1bQi
Pai "
abPbk = 1b�bPbk: (257)In virtue of the (252), (256), (257) the equality (251) takes the form�i
 3F 
ik(B) = �Hk + 1bPbk�b; (258)and, hen
e, Hk = ��i
 3F 
ik(B) + 1bPbk�b: (259)28



Early we have introdu
ed (see (111)) the linear 
ombination of 
onstraints Hi + A
i�
,whi
h generates transformations of 3-dimensional 
oordinates without a displa
ement ofvierbeins as geometri
al obje
ts (in the theory with 
anoni
al variables Qia, Pai ). By (218),(219) we 
an write this quantity in the formHk + A
k�
 = ��i
 3F 
ik(B) + (Bbk � Abk)�b + A
k�
 = ��i
 3F 
ik(B) +Bbk�b: (260)We 
an use, if it is 
onvenient, instead of the 
onstraint Hk the 
onstraintH0k � Hk + A
k�
 = ��i
 3F 
ik(B) +Bbk�b: (261)Sin
e the transformation (Qia;Pai ) �! (Ba
 ;�ia) is 
anoni
al the physi
al sense of the
onstraints �a (234) and H0k = Hi+A
i�
 (261) does not 
hange. The 
onstraints �a gen-erate, as earlier, the SO(3) { transformations of 3-dimensional vierbeins without a 
hangeof 
oordinates, and the 
onstraints H0k = Hi+A
i�
, �a generates the transformations of3-dimensional 
oordinates without the 
hange of vierbeins as geometri
al obje
ts.Let us return to the 
onstraint H0. By (250), (171) and the equality Qia = � 12 eia wehave�ia�kb"ab
 3F 
ik(B) = b2�eidekf"df
�12"
abelaemb 3Rik;lm + 1b � 3riP
k � 3rkP
i�� 1b2 "
abPaiPbk� == b2�eideldekfemf 3Rik;lm + 2b� 3ri �eidekfP
k"df
�� � �eidekf � eifekd�PdiPfk : (262)We have taken into a

ount that"df
"ab
 = ÆdaÆfb � ÆdbÆf
; 3rieka = 0; 3ri"df
 = 0: (263)Further, b2�eideldekfemf 3Rik;lm = b2��il�km 3Rik;lm = b2� 3R; (264)2b� 3ri �eidekfP
k"df
� = 2bp��i �p�eidekfP
k"df
� == 2bp��i �eid"df
QkfP
k� = 2bp��i �eid�d� ; (265)�� �eidekf � eifekd�PdiPfk = QifQkdPdiPfk � (QidPdi )2 == QkdPfk �QifPdi �QidPfi �+QidQkdPfi Pfk � (QidPdi )2 == QidQkdPfi Pfk � (QidPdi )2 �QkdPfk"df
�
: (266)Therefore�ia�kb"ab
 3F 
ik(B) = b2� 3R+�QidQkdPfi Pfk � (QidPdi )2��QkdPfk"df
�
+2bp��i �eid�d� : (267)At the same time, by (103)H0 = 14 � 2{Q 12 ��QkbQlbP
kP
l � (QkbPbk)2�� Q 122{!� 3R� 2�� : (268)29



Therefore the equality (267) 
an be written in two ways: the �rst one,�ia�kb"ab
 3F 
ik(B) == b2� 3R+4 Q 122{! H0 + Q 122{!� 3R� 2��!�QkdPfk"df
�
+2bp��i �eid�d� == 4 Q 122{! H0 + Q 122{!  1 + �2{2 �2 b2! 3R� 2�!!+�QkdPfk"df
�
 + 2bp��i �eid�d� ; (269)the se
ond one, taking into a

ount (218), (219):�ia�kb"ab
 3F 
ik(B) == �(2{)b2p�H0 + 1 + �2{2 �2 b2!�QkbQlbP
kP
l � (QkbPbk)2�++2b2���QkdPfk"df
�
 + 2bp��i �eid�d� == �(2{)b2p�H0+ 1 + �2{2 �2 b2!��kb�lb(B
k � A
k)(B
l � A
l )� ��kb (Bbk � Abk)�2�++2b2���QkdPfk"df
�
 + 2bp��i �eid�d� ; (270)where the A
k, Qkd, �, eid are to be expressed in terms of the �ia with the help of the (59),(60), (62), (218), (220). A

ordingly, the 
onstraint H0 
an be written in two forms:H0 = 14 � 2{Q 12 ���ia�kb"ab
 3F 
ik(B) +QkdPfk"df
�
 � 2bp��i �eid�d����Q 122{   1 + �2{2 �2 b2! 3R� 2�! (271)andH0 = 1(2{)b2p� ��ia�kb"ab
 3F 
ik(B)++ 1 + �2{2 �2 b2!��kb�lb(B
k � A
k)(B
l � A
l )� ��kb (Bbk � Abk)�2�++2b2���QkdPfk"df
�
 + 2bp��i �eid�d�!: (272)The a
tion in the 
anoni
al form looks now like the following:Srep(B;�)(1) = Z d4x ��ia�0Bai �NH0 �N iHi � �a�a� : (273)Substitute here at �rst the H0 in the form (271) and repla
eZ d4xN 12(2{)b�i(eid�d) (274)30



by the Z d4x��2{2 beid(�iN)�d� (275)assuming, for the simpli
ity, that the universe is 
losed and throwing out the surfa
e termin the integral2. Let us take, further, by (261)NkHk = NkH0k �NkA
k�
: (276)As a result we �nd thatSrep(B;�)(1) = Z d4x��ia�oBai���14N 2{Q 12 � �ia�kb"ab
 3F 
ik(B)�Q� 22{�2  1 + �2{2 �2 b2! 3R � 2�!!��NkH0k � ��a + 14N 2{Q 12 QkdPfk"dfa + 2{2 beia�iN �NkAak��a�: (277)Now we introdu
e new lagrange multipliersN 0 = 14N 2{pQ; (278)�0a = �a + 14N (2{)pQ QkdPfk"dfa + (2{)2 beia�iN �NkAak: (279)Sin
e N , �a are arbitrary fun
tions, N , �a are arbitrary too, and they may be used aslagrange multipliers.Now we getSrep(B;�)(1) = Z d4x��ia�0Bai �N 0H00 �NkH0k � �0a�a� ; (280)where H0k, �a are determined by (261), (234) andH00 = �ia�kb"ab
 3F 
ik(B) + b�3�� 2(2{)�2  1 + �(2{)2 �2 b2! 3R� 2�! : (281)We take into a

ount that� = Q = �b�3� � �b�3 det(�ia): (282)in a

ordan
e with (229). It is presumed, that 3R is expressed in terms of �ia by (218),(65). Lagrange multipliers N 0 and �0a may be also expressed in terms of N , Nk, �a, B
i ,�i
 by (218), (219), (146).Let us represent Srep(B;�)(1) in the other form with the help of expression (272) for H0:From this expression and (217), (276) we �ndSrep(B;�)(1) = Z d4x �ia�0Bai � �� N(2{)b2p����ia�kb"ab
 3F 
ik(B)�2Even if the spa
e-time is asymptoti
ally 
at at free dimensional in�nity the surfa
e term 
an be herenegle
ted be
ause the 
orresponding expression de
rease at xixi !1 enough rapidly.31



� 1 + �2{2 �2 b2!���kb (Bbk � Abk)�2 � �kb�lb(B
k � A
k)(B
l � A
l )�� 2b2�����NkH0k � ��a � N(2{)b2p�QkdPfk"dfa � 2(2{)b(�iN)eia �NkAak��a!: (283)If we introdu
e instead of N , �a new lagrange multipliersN 00 = � N(2{)b2p� ; (284)�00a = �a � N(2{)b2p�QkdPfk"dfa � 2(2{)beia�iN �NkAak; (285)the a
tion (283) will be:Srep(B;�)(1) = Z d4x��ia�0Bai �N 00H000 �NkH0k � �00a�a� ; (286)whereH000 = �ia�kb"ab
 3F 
ik(B)�� 1 + �(2{)2 �2 b2!���kb (Bbk � Abk)�2 � �kb�lb(B
k � A
k)(B
l � A
l )�� 2b��: (287)It is supposed here that Abk is expressed in terms of �kb in a

ordan
e with (220) and that� = det� ia, 3F 
ik(B) = �iB
k � �kB
i � "
abBai Bbk; (288)and in a

ordan
e with (227), (234), (261)H0k = ��i
 3F 
ik(B) +Bbk�b; (289)�a = �p�� 3ri[B℄� �iap��� = � ��k�ka � �kbBbka� ; (290)where Bbka = "ba
B
k.One may express lagrange multipliers N 00, �00a in terms of N , Nk; �a, B
i , � i
 with thehelp of (218), (219), (220) and equalities � = Q = �b�3�, eia = Q�1=2Qia.It is possible to use the theory, based on any of the two forms for a
tion { (280) or(286).The variablesBai ,� ia turn, after the quantization, into the operators with 
ommutationrelations for �xed x0 value:�Bai (x);�kb (ex)� = iÆki Æab Æ3(x� ~x); �Bai (x); Bbk(ex)� = 0; ��ia(x);�kb (ex)� = 0: (291)Lagrange multipliers are arbitrary fun
tions and one need seven more subsidiary 
ondi-tions to �x this arbitrariness. Constraints H0, Hi, �a are too involved to solve themexpli
itly. So one has to apply 
onstraints to the physi
al state ve
tors:H000j	 >= 0 (292)32



or H00j	 >= 0; (293)H0ij	 >= 0; (294)�aj	 >= 0: (295)It is easy to get state ve
tors in Bai -representation whi
h satisfy the 
onstraints (295). Infa
t, the 
onstraints �a (295) generate tetrad transformations, and the tra
e of the 
losed
ontour integration of 
onne
tion Bai is invariant under su
h transformations . Therefore,any fun
tion of any number of su
h tra
es of di�erent 
losed paths on the x0 = 0 surfa
eis invariant under SO(3) tetrad transformations and satis�es the 
onstraints (295).It is slightly more 
ompli
ated to satisfy 
onstraints H0i (294). These 
onstraintsgenerate three-dimensional 
oordinate transformations, whi
h do not a�e
t tetrad systemas geometri
al obje
t. Operators Bai (x) 
hange not into B0ai (x0), but into B0ai (x). In otherwords, 
hanging 
oordinate system 
arries the integration 
ontour with itself, so that itis not stable geometri
al obje
t. Tra
e of this path integral is not invariant under su
htransformations. But it is possible, in prin
ipe, to 
onstru
t state ve
tor, whi
h is invariantunder su
h transformation. One need �rstly to produ
e fun
tion 	 of some number of pathintegral tra
es and, then, 
arry out 
ontinual integration by all possible transformations ofthree dimensional 
oordinate system. It appears a state ve
tor, invariant under 
onstraintsH0i, �a.If it may be possible to satisfy the 
onstraint (292) (or (293) in other variant), thequantum gravity problem would be solved 
ompletely, sin
e generalized hamiltonian isnot more than linear 
ombination of the 
onstraints. However, the 
onstraint H000 (or H00)is mu
h more 
ompli
ated and one may rely on approximate 
al
ulations only. In approx-imate approa
h to the problem on the hypersurfa
e x0 = 0 it is usual to introdu
e latti
eand generate 
losed loops from its edges. It is known, how to get full set of independentstate ve
tors on this latti
e, whi
h satisfy 
onstraints (295). Di�erent approximate meth-ods to solve equations (292) (or (293)) are now being developed. This �eld is known as"loop theory of quantum gravity".It is as
ertain by now, that quantum theory results depend on Barbero-Immirzi param-eter b, though in 
lassi
 the di�erent b theories are 
onne
ted by 
anoni
al transformationsand so are equivalent. It is known also that in quantum 
ase the 
onstraint e�(0) = n� re-sults in violation of the lo
al Lorentz invarian
e of tetrad frame at very small (near Plan
klength) distan
es. It does not take pla
e in 
lassi
 
ase, where results do not depend onsupplementary 
onditions su
h as e�(0) = n�: Here we deal with quantum anomaly. It doesnot lessen the value of the theory in itself, sin
e quantum anomaly at very short distan
esmay not 
ontradi
t the observations. Nevertheless, the other possibility was investigatedin PhD thesis by S. Alexandrov [5℄. He determined that it is possible to 
onstru
t theorywithout violation of the lo
al Lorentz symmetry, but it would be very involved. Therefore,there were no any attempts to develop or to apply this theory.4 Complex Ashtekar formalismWe will not go here into problems of approximate solutions of the 
onstraint (292) or(293). One 
an meet it in the arti
les by Ashtekar, Thiemann and their 
olleagues. We33



des
ribe here only the 
omplex Ashtekar formalism, whi
h is of undoubted interest. Itmay be 
onstru
ted in the following way.One 
an 
ontinue the �elds Bai and � ia to the 
omplex plane, and setb = �i 1{ : (296)It is possible to sele
t any sign here. We suppose further that only upper, or only downsigns are used. In a

ordan
e with (170), (171), (218), (219) the equalitiesBai = Aai � i{Pai ; �ia = � i{Qia; (297)Qia = �i{�ia; Pai = �i 1{ (Bai � Aai ) (298)take pla
e. At the same time the expressions (281), (287) are simpli�ed abruptly and takethe form H00 = H000 = �ia�kb"ab
 3F 
ik(B)� 2i{��: (299)The other 
onstraints remain un
hanged. Let us note, that under 
ondition b = �i={ anequality N 0 = N 00 takes pla
e in a

ordan
e with (278), (284).Taking into a

ount the form of the quantities 3F 
ik(B) in (288) we 
on
lude, that allthe 
onstraints depend polynomially on the 
anoni
al variables Bai and �ia. This fa
tsimpli�es the theory abruptly. However, in order to return to the real domain (whi
h isphysi
al) we need to impose reality 
ondition onto the solutionsBai +Bai � = 2Aai ; (300)where Aai are expressed by way of (220) in �. This 
ondition may be 
onsidered as se
ond
lass 
onstraint in 
omplex theory. The existen
e of this 
ondition is the main problemin present method. The quantity Bai � in (300) is 
omplex 
onjugated with Bai in 
lassi
theory and is Hermitian 
onjugated with Bai in quantum theory.In view of 
omplexity of the (300), it is 
urrently preferred to 
onstru
t the loopquantum theory of gravity for a real value of the parameter b than for the 
omplexparameter b = �i={, in spite of the 
ompli
ated 
onstraint H00 (or H000) in real variant ofthe theory.Ashtekar 
ame to his formalism through four dimensional 
omplex selfdual tetrad
onne
tion. Now we turn to this point. Let CAB = �CAB be 
omplex antisymmetri
tetrad tensor on the tangent ve
tor bundle on the spa
e-time with the symmetry groupSO(1; 3): Then the tensor �CAB (��CAB) is named dual (anti-dual) with respe
t to CAB,if ��CAB = � i2�AD�BE"DEFGCFG: (301)Tensor aAB is named selfdual (anti-selfdual), ifaAB = �aAB = � i2�AD�BE"DEFGaFG; (302)aAB = ��aAB = i2�AD�BE"DEFGaFG; (303)34



i. e., if aab = �aab = �i"ab
a(0)
;a(0)
 = �a(0)
 = i2"
abaab; (304)aab = ��aab = +i"ab
a(0)
;a(0)
 = ��a(0)
 = � i2"
abaab: (305)Any antisymmetri
 tetrad tensor CAB may be de
ompose in selfdual and anti-selfdualparts: CAB = C(+)AB + C(�)AB; (306)C(+)AB = 12 �CAB + �CAB� = 12 �CAB � i2�AD�BE"DERSCRS� ; (307)C(�)AB = 12 �CAB � �CAB� = 12 �CAB + i2�AD�BE"DERSCRS� ; (308)i. e. C(�)ab = 12 �Cab � i"ab
C(0)
� ;C(�)(0)
 = 12 �C(0)
 � i2"
abCab� ; (309)and C(�)ab = ��C(�)ab = �i"ab
C(�)(0)
;C(�)(0)
 = ��C(�)(0)
 = � i2"
abC(�)ab: (310)Let us mention that the se
ond equality (310) follows from the �rst one and vi
e versa.So there exist only three independen
e 
onditions of selfduality. If we had omitted the iin (307) there would be six independent 
ondition and no tensors ful�lling them wouldexist. So, there do not exist real selfdual tensors.Working with tensors as FAB�� , whi
h are antisymmetri
 both in 
oordinate indi
es andin tetrad indi
es (e. g. 
urvature tensor in tetrad representation), one should bear in mindthat along with the 
on
eption of selfduality on the tetrad indi
es A;B one 
ould de�neby the 
orresponding manner also the 
on
eption of selfduality on the 
oordinate indi
es��. In gauge theories one deals with tensors, selfdual in Lorentz 
oordinate indi
es. Herewe take an interest in tensors (anti)selfdual in tetrad indi
es and we shall work with these(anti)selfdual tensors only. In parti
ular, for (anti)selfdual tensor FAB�� we haveFAB�� = � i2�AD�BE"DEFGF FG�� : (311)Let us turn now to the tetrad 
onne
tion A. Sin
e it is SO(1; 3)-
onne
tion, one hasAAB� � AA�D�DB = �ABA� : (312)35



The 
orresponding �eld strength isF��AD(A) = FAB�� (A)�BD = ��AA� D � ��AA�D + AA� EAE� D � AA� EAE� D; (313)or FAB�� (A) = ��AAB� � ��AAB� + AAD� �DEAEB� � AAD� �DEAEB� (314)and FAB�� = �FBA�� . When the frame is 
hanged, whi
h 
hanges the ve
tors refereed tothe tetrad basis by the rule a0A = !ABaB; (315)where !AB is a Lorentz matrix, su
h that!AB�BD!ED = �AE; det(!AB) = 1; (316)then the 
onne
tion 
hanges in a

ordan
e with the relationA0A� B = !ADAD� F (!�1)FB + !AB��(!�1)DB; (317)or, in view of (MT86), (MT87)A0AB� = !AD!BEADE� + !AD�DE��!BE; (318)and the 
orresponding �eld strength 
hanges asFAB�� (A0) = !AD!BEFDE�� (A): (319)Though the transformation (318) is not tensorial, we 
an at every frame �nd (anti)dualquantity with respe
t to A, if we set��AAB� = � i2�AD�BE"DEFHAFH : (320)Furthermore, ��FAB�� (A) = � i2�AD�BE"DEFHFAB�� : (321)The �FAB�� (A) is a tensor as is the 
ase with FAB�� (A): So�FAB�� (A0) = !AD!BE�FDE�� (A): (322)But �AAB� transforms by the rule�A0AB� = !AD!BE �ADE� � i2�AD�BE"DEFG!FH�HL��!GL; (323)whi
h di�ers from (318). Then, if we 
onstru
t FAB�� (�A) from �AAB� just as FAB�� (A) was
onstru
ted from A, we get FAB�� (�A) 6= �FAB�� (A) and FAB�� (�A) is not a tensor. Let us note,that the �rst term in the right hand side of (323) looks as tensor, sin
e the �rst term inthe right hand side of (318) is of tensor type and (anti)dual transformation 
onverts thetensor into the tensor. Let us organize (anti)selfdual quantitiesA(�)AB� = 12 �AAB� � �AAB� � ; (324)36



F (�)AB�� (A) = 12 �FAB�� (A)� �FAB�� (A)� : (325)From here we get AAB� = A(+)AB� + A(�)AB� ; (326)FAB�� = F (+)AB�� + F (�)AB�� ; (327)�A(�)AB� = �A(�)AB� ; (328)�F (�)AB�� (A) = �F (�)AB�� (A): (329)F (�)AB�� (A) are tensors, so under frame transformationF 0(�)AB�� (A) = !AD!BEF (�)DE�� (A); (330)and due to (318), (323)A(�)� 0AB = !AD!BEA(�)DE� +12 �!AD�DE��!AE � i2�AD�BE"DEFG!FH�HL��!GL� :(331)Now we 
onstru
t FAB�� (A(�)) from A(�)AB� in the same way as FAB�� (A) is 
onstru
tedfrom AAB� :FAB�� (A(�)) � ��A(�)AB� � ��A(�)AD� + A(�)AD� �DEA(�)EB� � A(�)AD� �DEA(�)EB� : (332)The following proposition is validF (�)AB�� (A) = FAB�� (A(�)); (333)and, in a

ordan
e with (330)FAB�� (A(�)0) = !AD!BEFDE�� (A(�)): (334)It is true in spite of the fa
t, that �FAB�� 6= FAB�� (�A) and the transformation rule for A(�)AB�(331) di�ers from the transformation rule for AAB� .Let us prove (333) for selfdual tensors (in upper indi
es). Anti-selfdual 
ase is similar.We haveFAB�� (A(+)) = ��A(+)AB� + A(+)AD� �DEA(+)ED� � (� ! �) == 12 ���AAB� + ���AAB� �+ 14 �AAD� + �AAD� � �DE �AEB� + �AEB� �� (� ! �) == 12 ���AAB� + 12AAD� �DEAEB� + 12�AAD� �DE�AED� �++12 ����AAB� + 12�AAD� �DEAEB� + 12AAD� �DE�AEB� �� (� ! �): (335)The next equality is valid:�AF"ABDE"FGHL = ��ÆBGÆDHÆEL + ÆBHÆDLÆEG + ÆBLÆDGÆEH�37



�ÆBGÆDLÆEH � ÆBLÆDHÆEG � ÆBHÆDGÆEL�; (336)and if aHL = �aLH , then�AF "ABDE"FGHLaHL = �2 (ÆBGÆDHÆEL + ÆBHÆDLÆEG + ÆBLÆDGÆEH) aHL: (337)Using this fa
t, we get�AAD� �DE�AEB� � (� ! �) == � i2�AF�DG"FGHLAHL� �DE �� i2� �EM�BN"MNPQAPQ� � (� ! �) == �14�GM"FGHLAHL� "MNPQAPQ� �AF�BN = 14�GM"GFHL"MNPQAHL� APQ� �AF�BN == �12 (�FN�HP�LQ + �FP�HQ�LN + �FQ�HN�LP )AHL� APQ� �AF�BN == �12 ��ABAHL� APQ� �HP�LQ + AHB� �HQAAQ� + ABL� �LPAPA� �� (� ! �) == �12 ��AHB� �HQAAQ� � ABL� �LPAPA� �� (� ! �) == 12 �AAQ� �QHAHB� + AAP� �PLALB� � = AAD� �DEAEB� : (338)It means that��AAB� + 12AAD� �DEAEB� + 12�AAD� �DE�AED� � (� ! �) == ��AAB� + AAD� �DEAEB� � (� ! �) = FAB�� (A); (339)so that in a

ordan
e with (335)FAB�� (A(+)) = 12FAB�� (A)++�12 ����AAB� + 12�AAD� �DEAEB� + 12AAD� �DE�AEB� �� (� ! �)� : (340)Further, the equality�12�AD�BE"DEFG�FH�GL"HLMN = �ÆAMÆBN � ÆANÆBM� (341)is identi
al. If aAB = �aBA, then�14�AD�BE"DEFG�FH�GL"HLMNaMN = aAB: (342)The expression �AAD� �DEAEB� + AAD� �DE�AEB� � (� ! �) (343)is antisymmetri
 in A, B due to the (�$ �): So, we have, taking (337) into a

ount,�AAD� �DEAEB� + AAD� �DE�AEB� � (� ! �) == �14�AF�BG"FGHL�HM�LN"MNQP�� i2�QR�DS"RSXZAXZ� �DEAEP� +38



+AQD� �DE �� i2� �ER�PS"RSXZAXZ� �� (� ! �) == i8�AF�BG"FGHL�HM�LN��QR"QMNP"RSXZAXZ� ASP� ++�PS"PMNQ"SRXZAQR� AXZ� �� (� ! �) == � i8�AF�BG"FGHL�HM�LN�2 (�MS�NX�PZ + �MX�NZ�PS + �MZ�PX�NS)AXZ� ASP� ++2 (�MR�NX�QZ + �MX�NZ�QR + �MZ�NR�QX)AQR� AXZ� � (� ! �)� == � i4�AF�BG"FGHL��AHP� �PZAZL� + AHX� �XPAPL� ++AHQ� �QZAZL� � AHX� �XQAQL� � (� ! �)� == � i2�AF�BG"FGHL �AHX� �XPAPL� � AHP� �PZAZL� � (� ! �)� == �i�AF�BG"FGHLAHX� �XPAPL� � (� ! �); (344)and, further, by (340)12 ��AAB� + 12�AAD� �DEAEB� + 12AAD� �DE�AEB� �� (� ! �) == 12 �� i2�AD�BE"DEFG � ��AFG� + AFH� �HLALG� � (� ! �)�� == 12 �� i2�AD�BE"DEFGF FG�� (A)� = 12�FAB�� (A) (345)and FAB�� (A(+)) = 12 �FAB�� (A) + �FAB�� � = F (+)AB(A): (346)The proposition (333) is proved.So, one may get the selfdual (anti-selfdual) part of the �eld strength from the selfdual(anti-selfdual) part of the 
onne
tion dy the same way as usual �eld strength from theusual 
onne
tion.The next proposition is as well true (it is like one whi
h was proved just now, but notthe same). Let a(�)AB� be any (anti)selfdual quantity with arbitrary transformation ruleunder the frame transformations and letFAB�� (a(�)) = ��a(�)AB� � ��a(�)AB� + a(�)AD� �DEa(�)EB � a(�)AD� �DEa(�)EB� : (347)Now we state that FAB�� (a(�)) is (anti)selfdual, i. e. if �a(�)AB� = �aAB� , then �FAB�� (a(�)) =�F (a(�)).Note: if a(�)AB� does not transforms as (anti)selfdual part of the 
onne
tion A(�)AB� ,then FAB�� (a(�)) is not, in general, a tensor, but it is (anti)selfdual.Corollary: if 
 = 
onst, 
 6= 1, then FAB�� (
A(�)) is (anti)selfdual, though it is not atensor.We prove the above statement for selfdual 
ase (anti-selfdual 
ase is similar). Let ustake into a

ount, that a(+)AB� = � i2�AD�BE"DEFGa(+)FG: (348)39



We have� i2�AD�BE"DBFGF FG�� (a(+)) == �� �� i2�AD�BE"DEFGa(+)FG� �� �� �� i2�AD�BE"DEFGa(+)FG� ��� i2�AD�BE"DEFG �a(+)FH� �HMa(+)MG� � a(+)FH� �HMa(+)MG� � == ��a(+)AB� � ��a(+)AB� �� i2�AD�BE"DEFG�� i2�FN�HP"NPRSa(+)RS� �HMa(+)MG� � (� ! �)� == ��a(+)AB� ���a(+)AB� � 14 ��AD�BE�EN"DEFG"NMRSa(+)RS� a(+)MG� � (� ! �)� : (349)Further�EN"FDES"NMRSa(+)RS� == � (�DM�ER�GS + �DR�ES�GM + �DS�EM�GR � (R ! S)) a(+)RS� == �2 (�DM�ER�GS + �DR�ES�GM + �DS�EM�GR) a(+)RS� : (350)Then,� i2�AD�BE"DEFGF FG�� (a(+)) = ��a(+)AB� � ��a(+)AB� ++12�AD�BE �(�DM�ER�GS + �DR�ES�GM + �DS�EM�GR) a(+)RS� a(+)MG� � (� ! �)� == ��a(+)AB� � ��a(+)AB� ++12 �a(+)BS� a(+)AG� �SG + a(+)AB� a(+)MG� �MG + a(+)RA� a(+)BG� �RG � (� ! �)� == ��a(+)AB� � ��a(+)AB� + a(+)AD� �DEa(+)EB� � a(+)AD� �DEa(+)EB� = FAB�� (a(+)); (351)so, FAB�� (a(+)) = � i2�AB�BE"DEFGF FG�� (a(+)): (352)It may be proved in a similar manner thatFAB�� (a(�)) = i2�AB�BE"DEFGF FG�� (a(�)): (353)So, if a(�)AB� = � i2�AD�BE"DEFGa(�)FG� ; (354)then FAB�� (a(�)) = � i2�AD�BE"DEFGF (�)FG�� (a(�)): (355)It means that if a(�)AB� is (anti)selfdual, then FAB�� (a(�)) is also (anti)selfdual.40



Let us 
onsider now expression for the three-dimensional part of the (anti)selfdual �eldstrength with the help of (333), (310) (later we adopt a; b; ::: = 1; 2; 3):F (�)ab�� (A) = F ab��(A(�)) = ��A(�)ab� + A(�)aD� �DEA(�)Eb� � (� ! �) == ��A(�)ab + A(�)a
� A(�)
b� + A(�)a(0)� �(0)(0)A(�)(0)b� � (� ! �): (356)Same time with the help of (310)A(�)a(0)� �(0)(0)A(�)(0)b� � (� ! �) = �A(�)a(0)� A(�)(0)b� � (� ! �) == A(�)(0)a� A(�)(0)b� � (� ! �) = �� i2"a
dA(�)
d� ��� i2"bfgA(�)fg� �� (� ! �) == �14"a
dA(�)
d� "bfgA(�)fg� : (357)Sin
e A(�)
d� = �A(�)d
� , then"a
d"bfgA(�)
d� =2 �ÆabÆ
fÆdg + ÆafÆ
gÆdb + ÆagÆ
bÆdf�A(�)
d� == 2 �ÆabA(�)fg� + ÆafA(�)gb� + ÆagA(�)bf� � (358)andA(�)(0)a� A(�)(0)b� � (� ! �) == �12 �ÆabA(�)fg� + ÆafA(�)gb� + ÆagA(�)bf� �A(�)fg� � (� ! �) == �12 �ÆabA(�)fg� A(�)fg� + A(�)gb� A(�)ag� + A(�)bf� A(�)fa� � (� ! �)� == �A(�)gb� A(�)ag� � (� ! �) = A(�)ag� A(�)gb� � (� ! �): (359)In view of (356)F (�)ab�� (A) = ��A(�)ab� � ��A(�)ab� + 2(A(�)a
� A(�)
b� � A(�)a
� A(�)
b� ): (360)So,2F (�)ab�� (A) == ��(2A(�)ab� )���(2A(�)ab� )+(2A(�)a
� )(2A(�)
d� )�(2A(�)a
� )(2A(�)
b� ) � 3F ab��(2A(�)df� ); (361)where we denote by 3F ab��(2A(�)df� ) the quantity, whi
h is 
onstru
ted from 2A(�)dfi in thesame way as the three-dimensional (in frame indi
es) �eld strength is 
onstru
ted fromSO(3) 
onne
tion (2A(�)df� ) on the ve
tor bundle above the three-dimensional base withSO(3) stru
ture. It is 
lear, that in arbitrary SO(1; 3) frame system we have no framesubsystem, whi
h would be SO(3) frame system above the three-dimensional base. Butthe quantity 2F (�)ab�� (A) = 2F ab��(A(�)) = 3F ab��(2A(�)df� ) (362)is always so 
onstru
ted as if we deal with su
h SO(3) frame subsystem with 
onne
tion2A(�)df� , where index � runs only three values.41



Let us note that in some reviews on the loop gravity the 
onne
tion between F (�)ab�� (A),F ab��(A(�)) and 3F ab��(2A(�)df� ) is displayed insuÆ
iently thoroughly.Let us now turn to the 
ase, when SO(1; 3) tetrad system is subje
t to supplementary
ondition e�(0)(x) = n�(x); (363)where n�(x) is a unit normal to the x0 = 
onst hypersurfa
e, whi
h in
lude point x.Earlier during the 
onstru
tion of the gravitational theory in tetrad formalism we all thetime supposed, that the 
ondition (363) takes pla
e. Then after (45) e(0)i = 0. This
ondition must hold under frame transformation, so0 = e0(0)i = !(0)AeAi = !(0)aeai : (364)Sin
e det eai 6= 0, then !(0)a = 0: (365)It follows from !AB�BD!ED = �AE: (366)and (365) that !(0)B�BD!aD = !(0)(0)�(0)(0)!a(0) = 0; (367)from where !a(0) = 0: (368)Furthermore, in a

ordan
e with (365), (366), (368)!(0)(0)�(0)(0)!(0)(0) = �(0)(0); (369)from where (!(0)(0))2 = 1. We assume, that the dire
tion of e�0 does not depend on time,then !(0)(0) = 1.So, under a

epted restri
tions on frame system!(0)(0) = 1; !(0)a = 0; !a(0) = 0; (370)and the 
ondition (366) turns into !ab!
b = Æa
: (371)Now three-dimensional part eia of tetrads make up tetrad system on ve
tor SO(3) bundleabove the surfa
e x0 = 
onst, and matri
es !ab realize SO(3) rotation of this system.The transformation rule for the 
onne
tionA0AB� = !AD!BEADE� + !AD�DE��!BE (372)takes the form A0ab� = !a
!bdA
d� + !a
��!b
; A0(0)
� = !
DA(0)d: (373)42



As it was shown above, three-dimensional part of the 
onne
tion Aabi 
oin
ides with three-dimensional 
onne
tion 3Aabi , whi
h was built as usual on tetrads eai , formed in three-dimensional system on the surfa
e x0 = 
onst. In a

ordan
e with (309)A(�)ab� = 12 �Aab� � i"ab
A(0)
� � ; (374)A(�)(0)
� = 12 �A(0)
� � i2"
abAab� � : (375)We �nd from (373) that transformation rule for A(�)ab� takes the formA(�)0ab� = 12 �!a
!bdA
d� + !a
��!b
 � i"ab
!
dA(0)d� ; (376)but !a
!bd!fg"
dg = "abf ; (377)from where in view of (371) "ab
!
f = !a
!bd!"
df : (378)So "ab
!
dA(0)d = !a
!bd"
dfA(0)f (379)andA(�)ab� = 12 �!a
!bd �A
d� � i"
dfA(0)f� �+ !a
��!b
� == 12 �2!a
!bdA
d� + !a
��!b
� = !a
!bdA(�)
d� + 12!a
��!b
: (380)That why 2A(�)ab� = !a
!bd �2A(�)
d� �+ !a
��!b
 (381)and, in parti
ular 2A(�)abi = !a
!bd �2A(�)
di � + !a
�i!b
: (382)It means that the quantity (2A(�)abi ) in view of (382) and (373) transforms in the sameway as Aabi = 3Aabi . So the 
orresponding �eld strength3F abik �2A(�)d
l � = �i(2A(�)abk )� �k(2A(�)abi ) + 2A(�)a
i 2A(�)
bk � 2A(�)a
k 2A(�)
bi (383)is a three-dimensional tensor like the initial three-dimensional �eld strength3F abik(A) = �iAabk � �kAabi + Aa
i A
bk � Aa
k A
bi : (384)43



In view of (361) 3F abik(2A(�)df ) = 2F (�)abik (A); (385)where F (�)abik is the three-dimensional part of the (anti)selfdual �eld strengthF (�)AB�� (A) = 12 �FAB�� (A)� �FAB�� (A)� ; (386)
onstru
ted of the initial 
onne
tion AAB� . Unlike the part 3F abik(2A(�)df ) of the quantity(362), whi
h was introdu
ed in arbitrary SO(1; 3) frame and was only formally a three-dimensional �eld strength, 
onstru
ted of (2A(�)df ), we have here 3F abik(2A(�)df ), whi
his really three-dimensional �eld strength on x0 = 
onst surfa
e and is 
onstru
ted ofnew three-dimensional 
onne
tion 2A(�)dfi , whi
h transforms as initial three-dimensional
onne
tion Aabi = 3Aabi .So we get the following result. If one 
onstru
ts on the surfa
e x0 = 
onst in a framesystem with e�(0) = n� a doubled three-dimensional part 2A(�)abi of the (anti)selfdual
onne
tion A(�)AB� = 12(AAB� � �AAB� ), then this quantity 2A(�)abi will be, in a

ordan
ewith its transformation rule, a new three-dimensional 
onne
tion, and the new three-dimensional �eld strength 3F abik(2A(�)df ) 
oin
ides with 2F (�)abik (A), where F (�)abik (A) is theset of all three-dimensional 
omponents of (anti)selfdual part of the �eld strength FAB�� (A),based on initial 
onne
tion AAB� . Let us note that the three-dimensional strength3F abik(2A(�)df ) = 2F (�)abik (A) = 2F abik (A(�)) (387)does not 
oin
ide with the three-dimensional part of the four-dimensional quantityFAB�� (2A(�)), whi
h is not a Lorentz tensor in A;B indi
es, in spite of its selfduality.One need to avoid 
onfusion between three-dimensional part of FAB�� (2A(�)) and three-dimensional tensor 3F abik(2A(�)df ).One may represent the three-dimensional tensor 3F abik(2A(�)df ) and the new three-dimensional 
onne
tion 2A(�)dfi as3F abik(2A(�)df ) = "ab
 3F 
ik(2A(�)df ); (388)2A(�)abi = "ab
2A(�)
i ; (389)where in a

ordan
e with (374)2A(�)
i = 12"
ab2A(�)abi = "
ab12 �Aabi � i"ab
A(0)
i � = A
i � iA(0)
: (390)Here we put as previously A
i = 12"
abAabi : (391)So 2A(�)
i = A
i � iA(0)
i ; (392)44



2A(�)abi = "ab
2A(�)
i = "ab
 �A
i � iA(0)
i � : (393)Let us 
ompare this result with previously displayed 
anoni
al theory, in whi
h B
iand �ia are generalized 
oordinates and momenta. In view of (22)A(0)
i = A(0)i 
 = e(0)� ��i�e�
 � (�ie(0)� )e�
 : (394)In spe
ial tetrad system (37), (45), (48)e0a = 0; e(0)i = 0; e0(0) = 1N ; e(0)0 = N (395)and A(0)
i = e(0)0 �0ikek
 � (�ie(0)k )ek
 = N�0ikek
 : (396)In view of (MT108) N�0ik = �Kik, soA(0)
i = �Kikek
 : (397)In view of (MT348), (MT350) Kik = �12Jik;lmP lm; (398)where P lm are generalized ADM momenta. In view of (MT357)�ik = � 1(2{)2p� Jik;lmP lm; (399)where �ik are generalized FP momenta. By (398), (399)�ik = 1(2{)p�Kik: (400)In view of (75) and (400)Pai = 2�ikQka = 2(2{)p�KikQka = 1{Kikeka; (401)Kikeka = {Pai : (402)In view of (392), (397) and (402)2A(�)
i = A
i � i{P
i : (403)If we 
ompare (403) with the �rst equality (297) we see that they 
oin
ide, if we 
hangeup and down indi
es in (297) and setB
i = 2A(�)
i : (404)It means that if b = �i={, the dynami
al variables B
i 
oin
ide with double three-dimensional part of (anti)selfdual 
omponent A(�)AB� = 12 �AAB� + �AAB� � of the 
onne
tionAAB� (upper sign in (403) for antiselfdual and down sign for selfdual 
omponents). Just45



that 
ir
umstan
e results in abrupt simpli�
ation of the 
onstraint H0 under su
h valuesof b. It is 
lear that it is possible only in tetrad system with e�(0) = n�.Ashtekar got his 
onstru
tion beginning from selfdual tetrad 
onne
tion and then hedis
overed essential simpli�
ation of H0 in this 
ase. It be
ame 
lear later, that equalities(158), (159) take pla
e, and we lay this in the basis of our 
onsideration. As we see, ifb = � i{ and Bai = 2A(�)ai , the relation3F abik(B) = 3F abik(2A(�)
d) = 2F (�)abik (A) (405)takes pla
e, where F (�)abik (A) is the three-dimensional part of the tensorF (�)AB�� (A) = 12 �FAB�� � �FAB�� � ; (406)and 3F abik(B) is spe
i�ed by (245).As we noted before, 
omplex tetrad (anti)selfdual formalism is in use more rarely, thanreal non(anti)selfdual theory with more involved 
onstraint H00 (or H000) be
ause of very
ompli
ated return from 
omplex to real region.Hereon we 
omplete the des
ription of the di�erent forms of 
anoni
al tetrad formalismin gravitation theory.Referen
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